-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
551 lines (467 loc) · 22.5 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# Script for loading & preprocessing the HotpotQA data
from pathlib import Path
from collections import Counter, OrderedDict
from utils import load_data, save_data
from utils import Querier
from kb import WikidataQueryHandler, ELQQueryHandler
from kb import PropertyStore
from fuzzywuzzy import fuzz
dataset_paths = {
'HotpotQA': {
'train': 'data/HotpotQA/hotpot_train_v1.1.json',
'dev-distractor': 'data/HotpotQA/hotpot_dev_distractor_v1.json',
'dev-distractor-sample': 'data/HotpotQA/hotpot_dev_distractor_v1.json',
'dev-fullwiki': 'data/HotpotQA/hotpot_dev_fullwiki_v1.json',
'test-fullwiki': 'data/HotpotQA/hotpot_test_fullwiki_v1.json'
},
'HotpotQA-entities-qonly': {
'train':
'data/HotpotQA-entities/hotpot_train_entities_v1.1_qonly.json',
'train-graph':
'data/HotpotQA-entities/' +
'hotpot_train_entities_v1.1_qonly_graph_0-50.json',
'dev-distractor':
'data/HotpotQA-entities/hotpot_dev_distractor_entities_v1_qonly.json',
'dev-distractor-graph':
'data/HotpotQA-entities/' +
'hotpot_dev_distractor_entities_v1_qonly_graph.json',
'dev-distractor-sample':
'data/HotpotQA-entities/' +
'hotpot_dev_distractor_entities_v1_qonly_sample.json',
'dev-distractor-sample-graph':
'data/HotpotQA-entities/' +
'hotpot_dev_distractor_entities_v1_qonly_sample_graph.json',
},
'HotpotQA-entities-full': {
'train': 'data/HotpotQA-entities/hotpot_train_entities_v1.1.json',
'dev-distractor':
'data/HotpotQA-entities/hotpot_dev_distractor_entities_v1.json'
}
}
def get_statistics(data):
size = len(data)
type_counter = Counter([question["type"] for question in data])
level_counter = Counter([question["level"] for question in data])
return (size, type_counter, level_counter)
def process_objects_response(response):
results = response['results']
properties = []
for binding in results['bindings']:
property_uri = binding['baseProp']['value']
object_uri = binding['object']['value']
object_label = binding['ooLabel']['value']
obj = {}
if object_uri.startswith('http://www.wikidata.org/entity/'):
obj['uri'] = object_uri
obj['label'] = object_label
else:
# it's either a literal or a blank node, just set the label
obj['uri'] = None
obj['label'] = object_label
properties.append((property_uri, obj['uri'], obj['label']))
return properties
#####
response
results:
bindings
baseProp
value
object
value
ooLabel
value
tree
uri: ${object_uri ~= ^'http://www.wikidata.org/entity/' ? object_uri : None}
label: $object_label
find response/results/bindings/ baseProp/value [as prop]
object/value [as uri]
ooLabel/value [as label]
def process_subjects_response(response):
results = response['results']
properties = []
for binding in results['bindings']:
property_uri = binding['baseProp']['value']
subject_uri = binding['subject']['value']
subject_label = binding['subjLabel']['value']
subj = {}
if subject_uri.startswith('http://www.wikidata.org/entity/'):
subj['uri'] = subject_uri
subj['label'] = subject_label
else:
# it's either a literal or a blank node, just set the label
subj['uri'] = None
subj['label'] = subject_label
properties.append((property_uri, subj['uri'], subj['label']))
return properties
def assign_unique_property_ids(response, wikidata_properties_ids_file):
with open(wikidata_properties_ids_file, mode='w') as out_f:
properties = []
results = response['results']
for binding in results['bindings']:
property_uri = binding['property']['value']
properties.append(property_uri)
sorted_properties = sorted(properties, key=lambda x: int(
"".join([i for i in x if i.isdigit()])))
# print(sorted_properties)
json_property_ids = []
for idx in range(len(sorted_properties)):
json_property_ids.append(
{"property_uri": sorted_properties[idx], "id": idx})
save_data(json_property_ids, wikidata_properties_ids_file)
def test_entity_is_class(entity_id, instance_of_list, is_subclass):
is_class = False
# superclasses_list = []
# superclasses_list.append("Q2221906") # geographic location
# superclasses_list.append("Q811979") # architectural structure
# # classes_list.append("Q12280") # bridge
# # classes_list.append("Q39614") # cemetery
# superclasses_list.append("Q271669") # landform
# # classes_list.append("Q23397") # lake
# superclasses_list.append("Q55659167") # natural watercourse
# # classes_list.append("Q4022") # river
# superclasses_list.append("Q37813") # ecosystem
# # classes_list.append("Q4421") # forest
# superclasses_list.append("Q13418847") # historical event
# # classes_list.append("Q178561") # battle
# superclasses_list.append("Q781132") # military branch
# # classes_list.append("Q4508") # navy
# superclasses_list.append("Q24398318") # religious building
# # classes_list.append("Q16970") # church (building)
# superclasses_list.append("Q6881511") # enterprise
# # classes_list.append("Q22687") # bank
# superclasses_list.append("Q350604") # armed conflict
# # classes_list.append("Q198") # war
classes_list = []
classes_list.append("Q6256") # country
classes_list.append("Q3624078") # sovereign state
classes_list.append("Q5017") # continent
classes_list.append("Q855697") # subcontinent
classes_list.append("Q3336843") # nation within the UK
classes_list.append("Q7930989") # city/town
classes_list.append("Q1093829") # city of the US
classes_list.append("Q1549591") # big city
classes_list.append("Q35657") # state of the United States
classes_list.append("Q515") # city
classes_list.append("Q5119") # capital
classes_list.append("Q200250") # metropolis
classes_list.append("Q27676416") # city or town
classes_list.append("Q2418896") # part of the world
classes_list.append("Q1637706") # city with millions of inhabitants
classes_list.append("Q408804") # borrough of NYC
classes_list.append("Q3957") # town
classes_list.append("Q462778") # insular area
classes_list.append("Q5852411") # state of Australia
classes_list.append("Q11828004") # province of Canada
classes_list.append("Q25894868") # place type
# designation for an administrative territorial entity
classes_list.append("Q15617994")
classes_list.append("Q3024240") # historical country
classes_list.append("Q20667921") # type of French administrative division
classes_list.append("Q484170") # commune of France
classes_list.append("Q24017414") # second-order class
classes_list.append("Q19361238") # Wikidata metaclass
classes_list.append("Q151885") # concept
classes_list.append("Q1437361") # form
classes_list.append("Q13578154") # rank
classes_list.append("Q427626") # taxonomic rank
classes_list.append("Q5633421") # scientific journal
classes_list.append("Q891723") # public company
classes_list.append("Q9174") # religion
classes_list.append("Q31629") # type of sport
classes_list.append("Q11514315") # historical period
classes_list.append("Q41710") # ethnic group
classes_list.append("Q5962346") # classification system
classes_list.append("Q32880") # architectural style
classes_list.append("6607") # guitar
classes_list.append("Q34379") # musical instrument
classes_list.append("Q128309") # drum kit
classes_list.append("Q34770") # language
classes_list.append("Q25295") # language family
classes_list.append("Q44148") # male
classes_list.append("Q467") # woman
classes_list.append("Q8441") # man
classes_list.append("Q12308941") # male given name
classes_list.append("Q178885") # deity
classes_list.append("Q28640") # profession
classes_list.append("Q12737077") # occupation
classes_list.append("Q43229") # organization
classes_list.append("Q17197366") # type of organization
# independent agency of the United States government
classes_list.append("Q1752939")
# independent agency of the United States government
classes_list.append("Q1752939")
classes_list.append("Q2122214") # national archives
classes_list.append("Q188451") # music genre
classes_list.append("Q11424") # film
classes_list.append("Q201658") # film genre
classes_list.append("Q5398426") # television series
classes_list.append("Q215380") # musical group
classes_list.append("Q106043376") # music release type
classes_list.append("Q18127") # record label
classes_list.append("Q1971694") # game mode
classes_list.append("Q659563") # video game genre
classes_list.append("Q47461344") # written work
classes_list.append("Q571") # book
classes_list.append("Q223393") # literary genre
classes_list.append("Q1792379") # art genre
classes_list.append("Q207694") # art museum
classes_list.append("Q27939") # singing
classes_list.append("Q4263830") # literary form
classes_list.append("Q483394") # genre
classes_list.append("Q7889") # video game
classes_list.append("Q2088357") # musical ensemble
classes_list.append("Q28640") # profession
classes_list.append("Q31629") # type of sport
classes_list.append("Q2312410") # sports discipline
classes_list.append("Q2736") # spectator sport
classes_list.append("Q183") # federation
classes_list.append("Q4611891") # association football
classes_list.append("Q1151733") # baseball position
classes_list.append("Q56019") # military rank
classes_list.append("Q6857706") # military specialism
classes_list.append("Q8473") # military
classes_list.append("Q66715801") # musical profession
classes_list.append("Q49757") # poet
classes_list.append("Q639669") # musician
classes_list.append("Q4220920") # filmmaking occupation
classes_list.append("Q15987302") # legal profession
classes_list.append("Q189533") # academic degree
classes_list.append("Q215380") # musical group
classes_list.append("Q48143") # meningitis
classes_list.append("Q12078") # cancer
classes_list.append("Q929833") # rare disease
classes_list.append("Q18123741") # infectious disease
classes_list.append("Q314676") # notifiable disease
classes_list.append("Q29496") # leukemia
classes_list.append("Q147778") # cirrhosis
classes_list.append("Q483247") # phenomenon
classes_list.append("Q12143") # time zone
classes_list.append("Q82799") # name
classes_list.append("Q8928") # constelation
classes_list.append("Q17444909") # astronimical object type
classes_list.append("Q5864") # G-type main-sequence star
classes_list.append("Q3235978") # circumstelar disk
classes_list.append("Q16334295") # group of humans
classes_list.append("Q1931388") # cause of death
classes_list.append("Q11344") # chemical element
classes_list.append("Q7278") # political party
# for cid in classes_list:
# if entity_id.endswith(cid):
# is_class = True
if is_subclass:
is_class = True
for instance_of in instance_of_list:
for cid in classes_list:
if instance_of.endswith(cid):
is_class = True
return is_class
def expand_entities(item, graph_json, entities, wikidata_handler, elq_handler, property_store):
combined_entities = {}
combined_entities.update(entities)
# for wikidata_id, entity in entities.items():
# print(f"Querying for extra entities...for {wikidata_id}")
# # get the text corresponding to this entity
# entity_text = Querier.get_results(
# *elq_handler.get_entity_text_query(wikidata_id))
# xtra_entities = Querier.get_results(
# *elq_handler.get_entities_from_text_query(entity_text))
# for ctx in xtra_entities:
# for entity in ctx['entities']:
# if 'wikidata_id' in entity and entity['wikidata_id']:
# combined_entities[entity['wikidata_id']] = entity
for wikidata_id, entity in combined_entities.items():
print(f"Extracting subgraph for ... {wikidata_id}, {entity['entity_title']}")
instance_of_list = []
# generate a Wikidata subgraph
# centered on these entities and save it
objects_response = Querier.get_wikidata_results(
*wikidata_handler.get_props_and_objects_query(wikidata_id))
object_properties = process_objects_response(objects_response)
if len(object_properties) == 0:
print(f'Warning: no object properties discovered for {wikidata_id} {entity}')
closest_object_properties = property_store.get_closest_object_properties(
item['question'], object_properties)
is_class = False
is_subclass = False
for p in object_properties:
if p[0].endswith("P279"):
is_subclass = True
break
for p in closest_object_properties:
triple = {}
triple['s'] = {
"type": "uri",
"value": f"http://www.wikidata.org/entity/" +
f"{entity['wikidata_id']}",
"label": f"{entity['entity_title']}",
"aka": f"{augment_entity(wikidata_id, wikidata_handler)}"
}
triple['p'] = {
"type": "uri",
"value": f"{p['uri']}",
"label": f"{p['label']}"
}
triple['o'] = {
"type": "uri",
"value": f"{p['object_uri']}",
"label": f"{p['object_label']}"
}
if not p['object_uri']:
triple['o']['value'] = None
triple['o']['type'] = "literal"
if triple['o']['value']:
qid = triple['o']['value'][triple['o']['value'].rfind(
'/') + 1:]
triple['o']['aka'] = augment_entity(qid, wikidata_handler)
if triple['p']['value'].endswith("P31"):
instance_of_list.append(triple['o']['value'])
print(f"{triple['p']['value']}")
print(f"{triple['o']['value']}")
print(f"{triple['o']['label']}")
graph_json['triples'].append(triple)
print(f'Entity is subclass: {is_subclass}')
if test_entity_is_class(wikidata_id, instance_of_list, is_subclass):
continue
subjects_response = Querier.get_wikidata_results(
*wikidata_handler.get_props_and_subjects_query(wikidata_id))
subject_properties = process_subjects_response(subjects_response)
if len(subject_properties) == 0:
continue
closest_subject_properties = property_store.get_closest_subject_properties(
item['question'], subject_properties)
for p in closest_subject_properties:
triple = {}
triple['o'] = {
"type": "uri",
"value": f"http://www.wikidata.org/entity/" +
f"{entity['wikidata_id']}",
"label": f"{entity['entity_title']}",
"aka": f"{augment_entity(wikidata_id, wikidata_handler)}"
}
triple['p'] = {
"type": "uri",
"value": f"{p['uri']}",
"label": f"{p['label']}"
}
triple['s'] = {
"type": "uri",
"value": f"{p['subject_uri']}",
"label": f"{p['subject_label']}"
}
if not p['subject_uri']:
triple['s']['value'] = None
triple['s']['type'] = "literal"
if triple['s']['value']:
qid = triple['s']['value'][triple['s']['value'].rfind(
'/') + 1:]
triple['s']['aka'] = augment_entity(qid, wikidata_handler)
graph_json['triples'].append(triple)
def match_entity_answer_to_nodes(item, graph_json, handler):
if item['answer'] == 'yes':
graph_json['answer_entity'] = handler.get_yes_entity()
elif item['answer'] == 'no':
graph_json['answer_entity'] = handler.get_no_entity()
else:
print(f'real answer {item["answer"]}')
for triple in graph_json['triples']:
if not graph_json['answer_entity']:
if triple['s']['value'] and triple['s']['value'].endswith(item['answer']):
graph_json['answer_entity'] = triple['s']
break
if not graph_json['answer_entity']:
if triple['o']['value'] and triple['o']['value'].endswith(item['answer']):
graph_json['answer_entity'] = triple['o']
break
if not graph_json['answer_entity']:
graph_json['answer_entity'] = handler.get_n_a_entity()
print(f"selected answer {graph_json['answer_entity']}")
def match_answer_to_nodes(item, graph_json, handler):
if item['answer'] == 'yes':
graph_json['answer_entity'] = handler.get_yes_entity()
elif item['answer'] == 'no':
graph_json['answer_entity'] = handler.get_no_entity()
else:
print(f'real answer {item["answer"]}')
if len(item['answer_entities']) == 0:
graph_json['answer_entity'] = handler.get_n_a_entity()
else:
for triple in graph_json['triples']:
if not graph_json['answer_entity']:
if triple['s']['label'] == item['answer']:
graph_json['answer_entity'] = triple['s']
break
if 'aka' in triple['s']:
for aka in triple['s']['aka']:
if aka == item['answer']:
graph_json['answer_entity'] = triple['s']
break
if fuzz.ratio(triple['s']['label'], item['answer']) >= 80:
graph_json['answer_entity'] = triple['s']
break
if not graph_json['answer_entity']:
if triple['o']['label'] == item['answer']:
graph_json['answer_entity'] = triple['o']
break
if 'aka' in triple['o']:
for aka in triple['o']['aka']:
if aka == item['answer']:
graph_json['answer_entity'] = triple['o']
break
# print("object ratio", triple['o']['label'], fuzz.ratio(
# triple['o']['label'], item['answer']))
if fuzz.ratio(triple['o']['label'], item['answer']) >= 80:
graph_json['answer_entity'] = triple['o']
break
if not graph_json['answer_entity']:
graph_json['answer_entity'] = handler.get_n_a_entity()
print(f"selected answer {graph_json['answer_entity']}")
def generate_answer_statistics(graph_jsons, handler):
yeses = len([graph for graph in graph_jsons if graph['answer_entity']
== handler.get_yes_entity()])
noes = len(
[graph for graph in graph_jsons if graph['answer_entity'] == handler.get_no_entity()])
nas = len(
[graph for graph in graph_jsons if graph['answer_entity'] == handler.get_n_a_entity()])
other = len([graph for graph in graph_jsons if graph['answer_entity'] != handler.get_yes_entity() and
graph['answer_entity'] != handler.get_no_entity() and
graph['answer_entity'] != handler.get_n_a_entity()])
print(f'There are {yeses} questions with answer "yes", {noes} questions with answer "no".')
print(f'There are {nas} questions with answer "n/a", {other} questions with a different answer.')
print(f'{yeses + noes + nas + other} questions in total.')
if __name__ == "__main__":
# handler = ELQQueryHandler()
# querier = Querier()
# question_entity_data = querier.get_results(
# *handler.get_entity_text_query("Q5"))
property_store = PropertyStore.get_wikidata_property_store()
# generate_graph_data('SimpleQuestionsWikidata-json-entities',
# 'dev-answerable-tiny',
# 'dev-answerable-graph-tiny', property_store, match_answer_entities=True, start=0, limit=0)
# preprocess('SimpleQuestionsWikidata-json',
# 'SimpleQuestionsWikidata-json-entities', 'dev-answerable')
# preprocess('SimpleQuestionsWikidata-json',
# 'SimpleQuestionsWikidata-json-entities', 'train-answerable')
# preprocess('SimpleQuestionsWikidata-json',
# 'SimpleQuestionsWikidata-json-entities', 'test-answerable')
# preprocess('HotpotQA', 'HotpotQA-entities-qonly', 'train', limit=100)
# preprocess('HotpotQA', 'HotpotQA-entities-qonly', 'dev-distractor')
# preprocess('HotpotQA', 'HotpotQA-entities-qonly',
# 'dev-distractor-sample', limit=10)
# ids = set()
# ids.add('fa504ab90e214efc97873bb76cfc8ee0')
# generate_graph_data('SimpleQuestionsWikidata-json-entities',
# 'dev-answerable',
# 'dev-answerable-graph', property_store, match_answer_entities=True, start=0, limit=0)
# generate_graph_data('SimpleQuestionsWikidata-json-entities',
# 'dev-answerable',
# 'dev-answerable-graph', property_store, match_answer_entities=True, start=0, limit=0)
# generate_graph_data('SimpleQuestionsWikidata-json-entities',
# 'train-answerable',
# 'train-answerable-graph', property_store, match_answer_entities=True, start=0)
# generate_graph_data('SimpleQuestionsWikidata-json-entities',
# 'test-answerable',
# 'test-answerable-graph', property_store, match_answer_entities=True, start=0, limit=0)
# generate_graph_data('HotpotQA-entities-qonly',
# 'dev-distractor', 'dev-distractor-graph', property_store, start=0, limit=0)
# generate_graph_data('HotpotQA-entities-qonly',
# 'train', 'train-graph', property_store, start=57500, limit=0)