Skip to content

Latest commit

 

History

History
76 lines (53 loc) · 2.24 KB

README.md

File metadata and controls

76 lines (53 loc) · 2.24 KB

Build Status Coverage Status #scikit.mcts#

Version: 0.1 (It's still alpha, don't use it for your production website!)

Website: https://github.com/hildensia/mcts

An implementation of Monte Carlo Search Trees in python.

Setup

Requirements:

  • numpy
  • scipy
  • pytest for tests

Than plain simple python setup.py install. Or use pip: pip install scikit.mcts.

Usage

Assume you have a very simple 3x3 maze. An action could be 'up', 'down', 'left' or 'right'. You start at [0, 0] and there is a reward at [2, 2].

class MazeAction(object):
    def __init__(self, move):
        self.move = np.asarray(move)
    
    def __eq__(self, other):
        return all(self.move == other.move)
        
    def __hash__(self):
        return 10*self.move[0] + self.move[1]

class MazeState(object):
    def __init__(self, pos):
        self.pos = np.asarray(pos)
        self.actions = [MazeAction([1, 0]),
                        MazeAction([0, 1]),
                        MazeAction([-1, 0]),
                        MazeAction([0, -1])]
    
    def perform(self, action):
        pos = self.pos + action.move
        pos = np.clip(pos, 0, 2)
        return MazeState(pos)
        
    def reward(self, parent, action):
        if all(self.pos == np.array([2, 2])):
            return 10
        else:
            return -1
            
    def is_terminal(self):
        return False
            
    def __eq__(self, other):
        return all(self.pos == other.pos)
        
    def __hash__(self):
        return 10 * self.pos[0] + self.pos[1]

This would be a plain simple implementation. Now let's run MCTS on top:

mcts = MCTS(tree_policy=UCB1(c=1.41), 
            default_policy=immediate_reward,
            backup=monte_carlo)

root = StateNode(parent=None, state=MazeState([0, 0]))
best_action = mcts(root)

Licence

See LICENCE

Authors

Johannes Kulick