forked from danielgordon10/thor-iqa-cvpr-2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
human_controlled_test.py
218 lines (196 loc) · 9.03 KB
/
human_controlled_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import pdb
import cv2
import numpy as np
import random
import os
from utils import game_util
from utils import drawing
import constants
class PersonGameState(object):
def __init__(self):
self.env = game_util.create_env()
self.env.step({'action': 'Initialize', 'gridSize': constants.AGENT_STEP_SIZE})
self.local_random = random.Random()
self.question_types = ['existence', 'counting', 'contains']
self.datasets = []
self.test_datasets = []
self.num_steps = 0
self.num_failed_steps = 0
for (qq, question_type) in enumerate(self.question_types):
data_file = os.path.join('questions', 'train', 'data' + '_' + question_type, 'combined.csv')
if qq in constants.USED_QUESTION_TYPES:
dataset = [line.strip().split(',') for line in open(data_file)][1:]
self.datasets.append(dataset)
print('Type', question_type, 'num_questions', len(self.datasets[-1]))
else:
self.datasets.append([])
# test data
data_file = os.path.join('questions', constants.TEST_SET, 'data' + '_' + question_type, 'combined.csv')
if qq in constants.USED_QUESTION_TYPES:
dataset = [line.strip().split(',') for line in open(data_file)][1:]
self.test_datasets.append(dataset)
print('Type', question_type, 'num_questions', len(self.test_datasets[-1]))
else:
self.test_datasets.append([])
def reset(self, seed=None, test_ind=None):
if seed is not None:
self.local_random.seed(seed)
question_row, question_type_ind = test_ind
question_type = self.question_types[question_type_ind]
question_data = self.test_datasets[question_type_ind][question_row % len(self.test_datasets[question_type_ind])]
scene_num, scene_seed, question_str, answer = question_data[1:5]
self.scene_seed = int(scene_seed)
self.scene_num = int(scene_num)
self.question_str = question_str
self.question_type_ind = question_type_ind
self.scene_name = 'FloorPlan%d' % self.scene_num
grid_file = 'layouts/%s-layout.npy' % self.scene_name
self.points = (np.load(grid_file) * 1.0 / constants.AGENT_STEP_SIZE).astype(int)
max_num_repeats = 1
remove_prob = 0.5
if question_type == 'existence':
max_num_repeats = 10
remove_prob = 0.25
elif question_type == 'counting':
max_num_repeats = constants.MAX_COUNTING_ANSWER + 1
remove_prob = 0.5
elif question_type == 'contains':
max_num_repeats = 10
remove_prob = 0.25
self.event = game_util.reset(self.env, self.scene_name,
render_image=True,
render_depth_image=True,
render_class_image=True,
render_object_image=True)
self.agent_height = self.event.metadata['agent']['position']['y']
self.event = self.env.random_initialize(self.scene_seed, max_num_repeats=max_num_repeats, remove_prob=remove_prob)
print('Question: %s' % self.question_str)
if answer == 'True':
self.answer = True
elif answer == 'False':
self.answer = True
else:
self.answer = int(answer)
start_point = self.local_random.randint(0, self.points.shape[0] - 1)
start_point = self.points[start_point, :].copy()
self.start_point = (start_point[0], start_point[1], self.local_random.randint(0, 3))
action = {'action': 'TeleportFull',
'x': self.start_point[0] * constants.AGENT_STEP_SIZE,
'y': self.agent_height,
'z': self.start_point[1] * constants.AGENT_STEP_SIZE,
'rotateOnTeleport': True,
'rotation': self.start_point[2] * 90,
'horizon': 30,
}
self.event = self.env.step(action)
self.process_frame()
def step(self, action_key):
action = None
if action_key == 'w':
action = {'action': 'MoveAhead'}
elif action_key == 'a':
action = {'action': 'RotateLeft'}
elif action_key == 's':
action = {'action': 'RotateRight'}
elif action_key == 'o':
action = {'action': 'OpenObject'}
elif action_key == 'c':
action = {'action': 'CloseObject'}
elif action_key == '+':
action = {'action': 'LookUp'}
elif action_key == '-':
action = {'action': 'LookDown'}
elif action_key == 'answer':
pass
elif action_key == 'q':
quit()
elif action_key == 'dd':
import pdb
pdb.set_trace()
print('debug entered')
else:
return
self.num_steps += 1
if action is not None:
if action['action'] in {'OpenObject', 'CloseObject'}:
action = game_util.set_open_close_object(action, self.event)
self.event = self.env.step(action)
if not self.event.metadata['lastActionSuccess']:
self.num_failed_steps += 1
self.process_frame()
def process_frame(self):
self.pose = self.event.pose
self.s_t = self.event.frame
self.detection_image = self.s_t.copy()
self.s_t_depth = self.event.depth_frame
boxes = []
scores = []
class_names = []
for k,v in self.event.class_detections2D.items():
if k in constants.OBJECTS_SET:
boxes.extend(v)
scores.extend([1] * len(v))
class_names.extend([k] * len(v))
detected_objects = [game_util.get_object(obj_id, self.event.metadata) for obj_id in self.event.instance_detections2D.keys()]
detected_objects = [obj for obj in detected_objects if obj is not None]
boxes = np.array([self.event.instance_detections2D[obj['objectId']] for obj in detected_objects])
class_names = np.array([obj['objectType'] for obj in detected_objects])
scores = np.ones(len(boxes))
self.detection_image = drawing.visualize_detections(
self.event.frame, boxes, class_names, scores)
print(self.question_str)
if __name__ == '__main__':
state = PersonGameState()
random.seed(0)
for question_type in constants.USED_QUESTION_TYPES:
print('Starting question type', question_type)
num_correct = 0
num_total = 0
questions = []
for test_ep in range(10):
questions.append((test_ep, (random.randint(0, 2**31), question_type)))
random.shuffle(questions)
for (qq, question) in enumerate(questions):
num_total += 1
action_key = ''
state.reset(*question)
while action_key != 'answer':
if constants.DEBUG:
images = [
state.s_t,
state.detection_image,
state.s_t_depth,
state.event.class_segmentation_frame,
state.event.instance_segmentation_frame]
titles = ['state', 'detections', 'depth', 'class segmentation', 'instance segmentation']
image = drawing.subplot(images, 2, 3, constants.SCREEN_WIDTH, constants.SCREEN_HEIGHT, 5, titles)
cv2.imshow('image', image[:, :, ::-1])
cv2.waitKey(10)
print('w: MoveAhead\na: RotateLeft\ns: RotateRight\no: OpenObject\nc: CloseObject\n+: LookUp\n-: LookDown\nanswer: Open answer dialog. type {true, false, yes, no}\nq: quit\ndd: enter debug')
new_action_key = input(">> ")
if new_action_key != '':
action_key = new_action_key
state.step(action_key)
answer = None
while answer is None:
answer = input("answer: ").lower()
if answer in {'true', 'false', 'yes', 'no'}:
if ((answer in {'true', 'yes'} and state.answer) or
(answer in {'false', 'no'} and not state.answer)):
print('Correct')
num_correct += 1
else:
try:
answer = int(answer)
if answer == state.answer:
print('Correct')
num_correct += 1
except ValueError as ve:
answer = None
print('Num questions', num_total)
print('Correct percent: %.2f%%' % (num_correct * 100.0 / num_total))
print('Total moves:', state.num_steps)
print('Average moves:', (state.num_steps / (qq + 1)))
print('Invalid moves percent: %.2f%%' % (state.num_failed_steps * 100.0 / state.num_steps))
state.num_steps = 0
state.num_failed_steps = 0