diff --git a/README.md b/README.md index cdb3d70b..637f9e9f 100644 --- a/README.md +++ b/README.md @@ -61,7 +61,11 @@ API的改动不是很大,本教程已经通过测试,保证能够在1.0中 [logistic回归二元分类](chapter3/3.1-logistic-regression.ipynb) -#### 第二节 计算机视觉 + +#### 第二节 CNN:MNIST数据集手写数字识别 + +[CNN:MNIST数据集手写数字识别](3.2-mnist.ipynb) + #### 第三节 自然语言处理 ### 第四章 提高 diff --git a/chapter3/3.2-mnist.ipynb b/chapter3/3.2-mnist.ipynb new file mode 100644 index 00000000..2d836c8a --- /dev/null +++ b/chapter3/3.2-mnist.ipynb @@ -0,0 +1,430 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'1.0.0'" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.optim as optim\n", + "from torchvision import datasets, transforms\n", + "torch.__version__" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3.2 MNIST数据集手写数字识别\n", + "\n", + "## 3.2.1 数据集介绍\n", + "MNIST 包括6万张28x28的训练样本,1万张测试样本,很多教程都会对它”下手”几乎成为一个 “典范”,可以说他就是计算机视觉里面的Hello World。所以我们这里也会使用MNIST来进行实战。\n", + "\n", + "我们在介绍卷积神经网络的时候说到过LeNet-5,LeNet-5之所以强大就是因为在当时的环境下将MNIST数据的识别率提高到了99%,这里我们也自己从头搭建一个卷积神经网络,也达到99%的准确率" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 3.2.2 手写数字识别\n", + "首先,我们定义一些超参数" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "BATCH_SIZE=512 #大概需要2G的显存\n", + "EPOCHS=20 # 总共训练批次\n", + "DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") # 让torch判断是否使用GPU,建议使用GPU环境,因为会快很多" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "因为Pytorch里面包含了MNIST的数据集,所以我们这里直接使用即可。\n", + "如果第一次执行会生成data文件夹,并且需要一些时间下载,如果以前下载过就不会再次下载了\n", + "\n", + "由于官方已经实现了dataset,所以这里可以直接使用DataLoader来对数据进行读取" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n", + "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n", + "Processing...\n", + "Done!\n" + ] + } + ], + "source": [ + "train_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST('data', train=True, download=True, \n", + " transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])),\n", + " batch_size=BATCH_SIZE, shuffle=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "测试集" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "test_loader = torch.utils.data.DataLoader(\n", + " datasets.MNIST('data', train=False, transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])),\n", + " batch_size=BATCH_SIZE, shuffle=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面我们定义一个网络,网络包含两个卷积层,conv1和conv2,然后紧接着两个线性层作为输出,最后输出10个维度,这10个维度我们作为0-9的标识来确定识别出的是那个数字\n", + "\n", + "在这里建议大家将每一层的输入和输出都显作为注释标注出来,这样后面阅读代码的会方便很多" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "class ConvNet(nn.Module):\n", + " def __init__(self):\n", + " super().__init__()\n", + " # 1,28x28\n", + " self.conv1=nn.Conv2d(1,10,5) # 10, 24x24\n", + " self.conv2=nn.Conv2d(10,20,3) # 128, 10x10\n", + " self.fc1 = nn.Linear(20*10*10,500)\n", + " self.fc2 = nn.Linear(500,10)\n", + " def forward(self,x):\n", + " in_size = x.size(0)\n", + " out = self.conv1(x) #24\n", + " out = F.relu(out)\n", + " out = F.max_pool2d(out, 2, 2) #12\n", + " out = self.conv2(out) #10\n", + " out = F.relu(out)\n", + " out = out.view(in_size,-1)\n", + " out = self.fc1(out)\n", + " out = F.relu(out)\n", + " out = self.fc2(out)\n", + " out = F.log_softmax(out,dim=1)\n", + " return out" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们实例化一个网络,实例化后使用.to方法将网络移动到GPU\n", + "\n", + "优化器我们也直接选择简单暴力的Adam" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "model = ConvNet().to(DEVICE)\n", + "optimizer = optim.Adam(model.parameters())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面定义一下训练的函数,我们将训练的所有操作都封装到这个函数中" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def train(model, device, train_loader, optimizer, epoch):\n", + " model.train()\n", + " for batch_idx, (data, target) in enumerate(train_loader):\n", + " data, target = data.to(device), target.to(device)\n", + " optimizer.zero_grad()\n", + " output = model(data)\n", + " loss = F.nll_loss(output, target)\n", + " loss.backward()\n", + " optimizer.step()\n", + " if(batch_idx+1)%30 == 0: \n", + " print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", + " epoch, batch_idx * len(data), len(train_loader.dataset),\n", + " 100. * batch_idx / len(train_loader), loss.item()))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "测试的操作也一样封装成一个函数" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "def test(model, device, test_loader):\n", + " model.eval()\n", + " test_loss = 0\n", + " correct = 0\n", + " with torch.no_grad():\n", + " for data, target in test_loader:\n", + " data, target = data.to(device), target.to(device)\n", + " output = model(data)\n", + " test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加\n", + " pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标\n", + " correct += pred.eq(target.view_as(pred)).sum().item()\n", + "\n", + " test_loss /= len(test_loader.dataset)\n", + " print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n", + " test_loss, correct, len(test_loader.dataset),\n", + " 100. * correct / len(test_loader.dataset)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "下面开始训练,封装起来的好处这里就体现出来了,只要谢两行就可以了" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Train Epoch: 1 [14848/60000 (25%)]\tLoss: 0.272529\n", + "Train Epoch: 1 [30208/60000 (50%)]\tLoss: 0.235455\n", + "Train Epoch: 1 [45568/60000 (75%)]\tLoss: 0.101858\n", + "\n", + "Test set: Average loss: 0.1018, Accuracy: 9695/10000 (97%)\n", + "\n", + "Train Epoch: 2 [14848/60000 (25%)]\tLoss: 0.057989\n", + "Train Epoch: 2 [30208/60000 (50%)]\tLoss: 0.083935\n", + "Train Epoch: 2 [45568/60000 (75%)]\tLoss: 0.051921\n", + "\n", + "Test set: Average loss: 0.0523, Accuracy: 9825/10000 (98%)\n", + "\n", + "Train Epoch: 3 [14848/60000 (25%)]\tLoss: 0.045383\n", + "Train Epoch: 3 [30208/60000 (50%)]\tLoss: 0.049402\n", + "Train Epoch: 3 [45568/60000 (75%)]\tLoss: 0.061366\n", + "\n", + "Test set: Average loss: 0.0408, Accuracy: 9866/10000 (99%)\n", + "\n", + "Train Epoch: 4 [14848/60000 (25%)]\tLoss: 0.035253\n", + "Train Epoch: 4 [30208/60000 (50%)]\tLoss: 0.038444\n", + "Train Epoch: 4 [45568/60000 (75%)]\tLoss: 0.036877\n", + "\n", + "Test set: Average loss: 0.0433, Accuracy: 9859/10000 (99%)\n", + "\n", + "Train Epoch: 5 [14848/60000 (25%)]\tLoss: 0.038996\n", + "Train Epoch: 5 [30208/60000 (50%)]\tLoss: 0.020670\n", + "Train Epoch: 5 [45568/60000 (75%)]\tLoss: 0.034658\n", + "\n", + "Test set: Average loss: 0.0339, Accuracy: 9885/10000 (99%)\n", + "\n", + "Train Epoch: 6 [14848/60000 (25%)]\tLoss: 0.067320\n", + "Train Epoch: 6 [30208/60000 (50%)]\tLoss: 0.016328\n", + "Train Epoch: 6 [45568/60000 (75%)]\tLoss: 0.017037\n", + "\n", + "Test set: Average loss: 0.0348, Accuracy: 9881/10000 (99%)\n", + "\n", + "Train Epoch: 7 [14848/60000 (25%)]\tLoss: 0.022150\n", + "Train Epoch: 7 [30208/60000 (50%)]\tLoss: 0.009608\n", + "Train Epoch: 7 [45568/60000 (75%)]\tLoss: 0.012742\n", + "\n", + "Test set: Average loss: 0.0346, Accuracy: 9895/10000 (99%)\n", + "\n", + "Train Epoch: 8 [14848/60000 (25%)]\tLoss: 0.010173\n", + "Train Epoch: 8 [30208/60000 (50%)]\tLoss: 0.019482\n", + "Train Epoch: 8 [45568/60000 (75%)]\tLoss: 0.012159\n", + "\n", + "Test set: Average loss: 0.0323, Accuracy: 9886/10000 (99%)\n", + "\n", + "Train Epoch: 9 [14848/60000 (25%)]\tLoss: 0.007792\n", + "Train Epoch: 9 [30208/60000 (50%)]\tLoss: 0.006970\n", + "Train Epoch: 9 [45568/60000 (75%)]\tLoss: 0.004989\n", + "\n", + "Test set: Average loss: 0.0294, Accuracy: 9909/10000 (99%)\n", + "\n", + "Train Epoch: 10 [14848/60000 (25%)]\tLoss: 0.003764\n", + "Train Epoch: 10 [30208/60000 (50%)]\tLoss: 0.005944\n", + "Train Epoch: 10 [45568/60000 (75%)]\tLoss: 0.001866\n", + "\n", + "Test set: Average loss: 0.0361, Accuracy: 9902/10000 (99%)\n", + "\n", + "Train Epoch: 11 [14848/60000 (25%)]\tLoss: 0.002737\n", + "Train Epoch: 11 [30208/60000 (50%)]\tLoss: 0.014134\n", + "Train Epoch: 11 [45568/60000 (75%)]\tLoss: 0.001365\n", + "\n", + "Test set: Average loss: 0.0309, Accuracy: 9905/10000 (99%)\n", + "\n", + "Train Epoch: 12 [14848/60000 (25%)]\tLoss: 0.003344\n", + "Train Epoch: 12 [30208/60000 (50%)]\tLoss: 0.003090\n", + "Train Epoch: 12 [45568/60000 (75%)]\tLoss: 0.004847\n", + "\n", + "Test set: Average loss: 0.0318, Accuracy: 9902/10000 (99%)\n", + "\n", + "Train Epoch: 13 [14848/60000 (25%)]\tLoss: 0.001278\n", + "Train Epoch: 13 [30208/60000 (50%)]\tLoss: 0.003016\n", + "Train Epoch: 13 [45568/60000 (75%)]\tLoss: 0.001328\n", + "\n", + "Test set: Average loss: 0.0358, Accuracy: 9906/10000 (99%)\n", + "\n", + "Train Epoch: 14 [14848/60000 (25%)]\tLoss: 0.002219\n", + "Train Epoch: 14 [30208/60000 (50%)]\tLoss: 0.003487\n", + "Train Epoch: 14 [45568/60000 (75%)]\tLoss: 0.014429\n", + "\n", + "Test set: Average loss: 0.0376, Accuracy: 9896/10000 (99%)\n", + "\n", + "Train Epoch: 15 [14848/60000 (25%)]\tLoss: 0.003042\n", + "Train Epoch: 15 [30208/60000 (50%)]\tLoss: 0.002974\n", + "Train Epoch: 15 [45568/60000 (75%)]\tLoss: 0.000871\n", + "\n", + "Test set: Average loss: 0.0346, Accuracy: 9909/10000 (99%)\n", + "\n", + "Train Epoch: 16 [14848/60000 (25%)]\tLoss: 0.000618\n", + "Train Epoch: 16 [30208/60000 (50%)]\tLoss: 0.003164\n", + "Train Epoch: 16 [45568/60000 (75%)]\tLoss: 0.007245\n", + "\n", + "Test set: Average loss: 0.0357, Accuracy: 9905/10000 (99%)\n", + "\n", + "Train Epoch: 17 [14848/60000 (25%)]\tLoss: 0.001874\n", + "Train Epoch: 17 [30208/60000 (50%)]\tLoss: 0.013951\n", + "Train Epoch: 17 [45568/60000 (75%)]\tLoss: 0.000729\n", + "\n", + "Test set: Average loss: 0.0322, Accuracy: 9922/10000 (99%)\n", + "\n", + "Train Epoch: 18 [14848/60000 (25%)]\tLoss: 0.002581\n", + "Train Epoch: 18 [30208/60000 (50%)]\tLoss: 0.001396\n", + "Train Epoch: 18 [45568/60000 (75%)]\tLoss: 0.015521\n", + "\n", + "Test set: Average loss: 0.0389, Accuracy: 9914/10000 (99%)\n", + "\n", + "Train Epoch: 19 [14848/60000 (25%)]\tLoss: 0.000283\n", + "Train Epoch: 19 [30208/60000 (50%)]\tLoss: 0.001385\n", + "Train Epoch: 19 [45568/60000 (75%)]\tLoss: 0.011184\n", + "\n", + "Test set: Average loss: 0.0383, Accuracy: 9901/10000 (99%)\n", + "\n", + "Train Epoch: 20 [14848/60000 (25%)]\tLoss: 0.000472\n", + "Train Epoch: 20 [30208/60000 (50%)]\tLoss: 0.003306\n", + "Train Epoch: 20 [45568/60000 (75%)]\tLoss: 0.018017\n", + "\n", + "Test set: Average loss: 0.0393, Accuracy: 9899/10000 (99%)\n", + "\n" + ] + } + ], + "source": [ + "for epoch in range(1, EPOCHS + 1):\n", + " train(model, DEVICE, train_loader, optimizer, epoch)\n", + " test(model, DEVICE, test_loader)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "我们看一下结果,准确率99%,没问题" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "如果你的模型连MNIST都搞不定,那么你的模型没有任何的价值\n", + "\n", + "如果你的模型搞定了MNIST,那么你的模型也可能没有任何的价值\n", + "\n", + "MNIST是一个很简单的数据集,但是因为他的局限性只能作为研究来使用,对于实际应用中带来的价值非常有限,但是通过这个例子,我们可以完全了解一个实际项目的工作流程\n", + "\n", + "我们找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。\n", + "\n", + "并且通过这个实战我们已经有了一个很好的模板,以后的项目都可以以这个模板为样例" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pytorch 1.0", + "language": "python", + "name": "pytorch1" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/chapter3/readme.md b/chapter3/readme.md index 03fe347b..521279e3 100644 --- a/chapter3/readme.md +++ b/chapter3/readme.md @@ -3,4 +3,7 @@ ## 目录 ### 3.1 logistic回归 -[logistic回归二元分类](3.1-logistic-regression.ipynb) \ No newline at end of file +[logistic回归二元分类](3.1-logistic-regression.ipynb) + +### 3.1 CNN:MNIST数据集手写数字识别 +[CNN:MNIST数据集手写数字识别](3.2-mnist.ipynb)