forked from huggingface/controlnet_aux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_controlnet_aux.py
121 lines (100 loc) · 4.6 KB
/
test_controlnet_aux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import shutil
from io import BytesIO
import numpy as np
import pytest
import requests
from PIL import Image
from controlnet_aux import (CannyDetector, ContentShuffleDetector, HEDdetector,
LeresDetector, LineartAnimeDetector,
LineartDetector, MediapipeFaceDetector,
MidasDetector, MLSDdetector, NormalBaeDetector,
OpenposeDetector, PidiNetDetector, SamDetector,
ZoeDetector)
OUTPUT_DIR = "tests/outputs"
def output(name, img):
img.save(os.path.join(OUTPUT_DIR, "{:s}.png".format(name)))
def common(name, processor, img):
output(name, processor(img))
output(name + "_pil_np", Image.fromarray(processor(img, output_type="np")))
output(name + "_np_np", Image.fromarray(processor(np.array(img, dtype=np.uint8), output_type="np")))
output(name + "_np_pil", processor(np.array(img, dtype=np.uint8), output_type="pil"))
output(name + "_scaled", processor(img, detect_resolution=640, image_resolution=768))
def return_pil(name, processor, img):
output(name + "_pil_false", Image.fromarray(processor(img, return_pil=False)))
output(name + "_pil_true", processor(img, return_pil=True))
@pytest.fixture(scope="module")
def img():
if os.path.exists(OUTPUT_DIR):
shutil.rmtree(OUTPUT_DIR)
os.mkdir(OUTPUT_DIR)
url = "https://huggingface.co/lllyasviel/sd-controlnet-openpose/resolve/main/images/pose.png"
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB").resize((512, 512))
return img
def test_canny(img):
canny = CannyDetector()
common("canny", canny, img)
output("canny_img", canny(img=img))
def test_hed(img):
hed = HEDdetector.from_pretrained("lllyasviel/Annotators")
common("hed", hed, img)
return_pil("hed", hed, img)
output("hed_safe", hed(img, safe=True))
output("hed_scribble", hed(img, scribble=True))
def test_leres(img):
leres = LeresDetector.from_pretrained("lllyasviel/Annotators")
common("leres", leres, img)
output("leres_boost", leres(img, boost=True))
def test_lineart(img):
lineart = LineartDetector.from_pretrained("lllyasviel/Annotators")
common("lineart", lineart, img)
return_pil("lineart", lineart, img)
output("lineart_coarse", lineart(img, coarse=True))
def test_lineart_anime(img):
lineart_anime = LineartAnimeDetector.from_pretrained("lllyasviel/Annotators")
common("lineart_anime", lineart_anime, img)
return_pil("lineart_anime", lineart_anime, img)
def test_mediapipe_face(img):
mediapipe = MediapipeFaceDetector()
common("mediapipe", mediapipe, img)
output("mediapipe_image", mediapipe(image=img))
def test_midas(img):
midas = MidasDetector.from_pretrained("lllyasviel/Annotators")
common("midas", midas, img)
output("midas_normal", midas(img, depth_and_normal=True)[1])
def test_mlsd(img):
mlsd = MLSDdetector.from_pretrained("lllyasviel/Annotators")
common("mlsd", mlsd, img)
return_pil("mlsd", mlsd, img)
def test_normalbae(img):
normal_bae = NormalBaeDetector.from_pretrained("lllyasviel/Annotators")
common("normal_bae", normal_bae, img)
return_pil("normal_bae", normal_bae, img)
def test_openpose(img):
openpose = OpenposeDetector.from_pretrained("lllyasviel/Annotators")
common("openpose", openpose, img)
return_pil("openpose", openpose, img)
output("openpose_hand_and_face_false", openpose(img, hand_and_face=False))
output("openpose_hand_and_face_true", openpose(img, hand_and_face=True))
output("openpose_face", openpose(img, include_body=True, include_hand=False, include_face=True))
output("openpose_faceonly", openpose(img, include_body=False, include_hand=False, include_face=True))
output("openpose_full", openpose(img, include_body=True, include_hand=True, include_face=True))
output("openpose_hand", openpose(img, include_body=True, include_hand=True, include_face=False))
def test_pidi(img):
pidi = PidiNetDetector.from_pretrained("lllyasviel/Annotators")
common("pidi", pidi, img)
return_pil("pidi", pidi, img)
output("pidi_safe", pidi(img, safe=True))
output("pidi_scribble", pidi(img, scribble=True))
def test_sam(img):
sam = SamDetector.from_pretrained("ybelkada/segment-anything", subfolder="checkpoints")
common("sam", sam, img)
output("sam_image", sam(image=img))
def test_shuffle(img):
shuffle = ContentShuffleDetector()
common("shuffle", shuffle, img)
return_pil("shuffle", shuffle, img)
def test_zoe(img):
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
common("zoe", zoe, img)