forked from Nealcly/templateNER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils_metrics.py
executable file
·307 lines (252 loc) · 9.48 KB
/
utils_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from collections import defaultdict
import numpy as np
def get_entities(seq):
"""Gets entities from sequence.
note: BIO
Args:
seq (list): sequence of labels.
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
seq = ['B-PER', 'I-PER', 'O', 'B-LOC', 'I-PER']
get_entity_bio(seq)
#output
[['PER', 0,1], ['LOC', 3, 3], ['PER', 4, 4]]
"""
if any(isinstance(s, list) for s in seq):
seq = [item for sublist in seq for item in sublist + ['O']]
prev_tag = 'O'
prev_type = ''
begin_offset = 0
chunks = []
for i, chunk in enumerate(seq + ['O']):
tag = chunk[0]
type_ = chunk.split('-')[-1]
if end_of_chunk(prev_tag, tag, prev_type, type_):
chunks.append((prev_type, begin_offset, i - 1))
if start_of_chunk(prev_tag, tag, prev_type, type_):
begin_offset = i
prev_tag = tag
prev_type = type_
return set(chunks)
def end_of_chunk(prev_tag, tag, prev_type, type_):
"""Checks if a chunk ended between the previous and current word.
Args:
prev_tag: previous chunk tag.
tag: current chunk tag.
prev_type: previous type.
type_: current type.
Returns:
chunk_end: boolean.
"""
chunk_end = False
if prev_tag == 'E': chunk_end = True
if prev_tag == 'S': chunk_end = True
if prev_tag == 'B' and tag == 'B': chunk_end = True
if prev_tag == 'B' and tag == 'S': chunk_end = True
if prev_tag == 'B' and tag == 'O': chunk_end = True
if prev_tag == 'I' and tag == 'B': chunk_end = True
if prev_tag == 'I' and tag == 'S': chunk_end = True
if prev_tag == 'I' and tag == 'O': chunk_end = True
if prev_tag != 'O' and prev_tag != '.' and prev_type != type_:
chunk_end = True
return chunk_end
def start_of_chunk(prev_tag, tag, prev_type, type_):
"""Checks if a chunk started between the previous and current word.
Args:
prev_tag: previous chunk tag.
tag: current chunk tag.
prev_type: previous type.
type_: current type.
Returns:
chunk_start: boolean.
"""
chunk_start = False
if tag == 'B': chunk_start = True
if tag == 'S': chunk_start = True
if prev_tag == 'E' and tag == 'E': chunk_start = True
if prev_tag == 'E' and tag == 'I': chunk_start = True
if prev_tag == 'S' and tag == 'E': chunk_start = True
if prev_tag == 'S' and tag == 'I': chunk_start = True
if prev_tag == 'O' and tag == 'E': chunk_start = True
if prev_tag == 'O' and tag == 'I': chunk_start = True
if tag != 'O' and tag != '.' and prev_type != type_:
chunk_start = True
return chunk_start
def get_entities_bios(seq):
"""Gets entities from sequence.
note: BIOS
Args:
seq (list): sequence of labels.
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
# >>> seq = ['B-PER', 'I-PER', 'O', 'S-LOC']
# >>> get_entity_bios(seq)
[['PER', 0,1], ['LOC', 3, 3]]
"""
if any(isinstance(s, list) for s in seq):
seq = [item for sublist in seq for item in sublist + ['O']]
chunks = []
chunk = [-1, -1, -1]
for indx, tag in enumerate(seq):
if tag.startswith("S-"):
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
chunk[1] = indx
chunk[2] = indx
chunk[0] = tag.split('-')[1]
chunks.append(chunk)
chunk = (-1, -1, -1)
if tag.startswith("B-"):
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
chunk[1] = indx
chunk[0] = tag.split('-')[1]
elif tag.startswith('I-') and chunk[1] != -1:
_type = tag.split('-')[1]
if _type == chunk[0]:
chunk[2] = indx
if indx == len(seq) - 1:
chunks.append(chunk)
else:
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
return set([tuple(chunk) for chunk in chunks])
def get_entities_bio(seq):
"""Gets entities from sequence.
note: BIO
Args:
seq (list): sequence of labels.
Returns:
list: list of (chunk_type, chunk_start, chunk_end).
Example:
seq = ['B-PER', 'I-PER', 'O', 'B-LOC', 'I-PER']
get_entity_bio(seq)
#output
[['PER', 0,1], ['LOC', 3, 3]]
"""
if any(isinstance(s, list) for s in seq):
seq = [item for sublist in seq for item in sublist + ['O']]
chunks = []
chunk = [-1, -1, -1]
for indx, tag in enumerate(seq):
if tag.startswith("B-"):
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
chunk[1] = indx
chunk[0] = tag.split('-')[1]
chunk[2] = indx
if indx == len(seq) - 1:
chunks.append(chunk)
elif tag.startswith('I-') and chunk[1] != -1:
_type = tag.split('-')[1]
if _type == chunk[0]:
chunk[2] = indx
if indx == len(seq) - 1:
chunks.append(chunk)
else:
if chunk[2] != -1:
chunks.append(chunk)
chunk = [-1, -1, -1]
return set([tuple(chunk) for chunk in chunks])
def get_entities_span(starts, ends):
if any(isinstance(s, list) for s in starts):
starts = [item for sublist in starts for item in sublist + ['<SEP>']]
if any(isinstance(s, list) for s in ends):
ends = [item for sublist in ends for item in sublist + ['<SEP>']]
chunks = []
for start_index, start in enumerate(starts):
if start in ['O', '<SEP>']:
continue
for end_index, end in enumerate(ends[start_index:]):
if start == end:
chunks.append((start, start_index, start_index + end_index))
break
elif end == '<SEP>':
break
return set(chunks)
def f1_score(true_entities, pred_entities):
"""Compute the F1 score."""
nb_correct = len(true_entities & pred_entities)
nb_pred = len(pred_entities)
nb_true = len(true_entities)
p = nb_correct / nb_pred if nb_pred > 0 else 0
r = nb_correct / nb_true if nb_true > 0 else 0
score = 2 * p * r / (p + r) if p + r > 0 else 0
return score
def precision_score(true_entities, pred_entities):
"""Compute the precision."""
nb_correct = len(true_entities & pred_entities)
nb_pred = len(pred_entities)
score = nb_correct / nb_pred if nb_pred > 0 else 0
return score
def recall_score(true_entities, pred_entities):
"""Compute the recall."""
nb_correct = len(true_entities & pred_entities)
nb_true = len(true_entities)
score = nb_correct / nb_true if nb_true > 0 else 0
return score
def classification_report(true_entities, pred_entities, digits=5):
"""Build a text report showing the main classification metrics."""
name_width = 0
d1 = defaultdict(set)
d2 = defaultdict(set)
for e in true_entities:
d1[e[0]].add((e[1], e[2]))
name_width = max(name_width, len(e[0]))
for e in pred_entities:
d2[e[0]].add((e[1], e[2]))
last_line_heading = 'macro avg'
width = max(name_width, len(last_line_heading), digits)
headers = ["precision", "recall", "f1-score", "support"]
head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers)
report = head_fmt.format(u'', *headers, width=width)
report += u'\n\n'
row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n'
ps, rs, f1s, s = [], [], [], []
for type_name, type_true_entities in d1.items():
type_pred_entities = d2[type_name]
nb_correct = len(type_true_entities & type_pred_entities)
nb_pred = len(type_pred_entities)
nb_true = len(type_true_entities)
p = nb_correct / nb_pred if nb_pred > 0 else 0
r = nb_correct / nb_true if nb_true > 0 else 0
f1 = 2 * p * r / (p + r) if p + r > 0 else 0
report += row_fmt.format(*[type_name, p, r, f1, nb_true], width=width, digits=digits)
ps.append(p)
rs.append(r)
f1s.append(f1)
s.append(nb_true)
report += u'\n'
# compute averages
report += row_fmt.format('micro avg',
precision_score(true_entities, pred_entities),
recall_score(true_entities, pred_entities),
f1_score(true_entities, pred_entities),
np.sum(s),
width=width, digits=digits)
report += row_fmt.format(last_line_heading,
np.average(ps, weights=s),
np.average(rs, weights=s),
np.average(f1s, weights=s),
np.sum(s),
width=width, digits=digits)
return report
def convert_span_to_bio(starts, ends):
labels = []
for start, end in zip(starts, ends):
entities = get_entities_span(start, end)
label = ['O'] * len(start)
for entity in entities:
label[entity[1]] = 'B-{}'.format(entity[0])
label[entity[1] + 1: entity[2] + 1] = ['I-{}'.format(entity[0])] * (entity[2] - entity[1])
labels.append(label)
return labels
# starts = [['O', 'O', 'O', 'MISC', 'O', 'O', 'O'], ['PER', 'O', 'O']]
# ends = [['O', 'O', 'O', 'O', 'O', 'MISC', 'O'], ['O', 'PER', 'O']]
# print(convert_span_to_bio(starts, ends))