-
Notifications
You must be signed in to change notification settings - Fork 94
/
eval_memory_usage.py
41 lines (29 loc) · 949 Bytes
/
eval_memory_usage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
from models.psp.pspnet import PSPNet
import sys
# Construct model
model = PSPNet(sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet50').cuda()
L = int(sys.argv[1])
batch_size = 1
def safe_forward(model, im, seg):
b, _, ph, pw = seg.shape
if (ph % 8 != 0) or (pw % 8 != 0):
newH = ((ph//8+1)*8)
newW = ((pw//8+1)*8)
p_im = torch.zeros(b, 3, newH, newW).cuda()
p_seg = torch.zeros(b, 1, newH, newW).cuda() - 1
p_im[:,:,0:ph,0:pw] = im
p_seg[:,:,0:ph,0:pw] = seg
im = p_im
seg = p_seg
images = model(im, seg)
return images
with torch.no_grad():
for _ in range(10):
im = torch.zeros((1, 3, L, L)).cuda()
seg = torch.zeros((1, 1, L, L)).cuda()
images = safe_forward(model, im, seg)
print(torch.cuda.max_memory_allocated()/1024/1024/1024)
del im
del seg
del images