-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathinference_core.py
118 lines (92 loc) · 3.87 KB
/
inference_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
This file specifies how propagation in done on a very high level.
It can handle DAVIS 2016/2017 evaluation.
Note that arguments like "end_idx" are actually not useful
because we always do full propagation in these datasets
"""
import torch
import numpy as np
import cv2
from model.eval_network import PropagationNetwork
from model.aggregate import aggregate_wbg
from util.tensor_util import pad_divide_by
class InferenceCore:
def __init__(self, prop_net:PropagationNetwork, images, num_objects, mem_freq=5):
self.prop_net = prop_net
self.mem_freq = mem_freq
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
# Pad each side to multiple of 16
images, self.pad = pad_divide_by(images, 16)
# Padded dimensions
nh, nw = images.shape[-2:]
self.images = images
self.device = 'cuda'
self.k = num_objects
self.masks = torch.zeros((t, 1, nh, nw), dtype=torch.uint8, device=self.device)
self.out_masks = np.zeros((t, h, w), dtype=np.uint8)
# Background included, not always consistent (i.e. sum up to 1)
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.device)
self.prob[0] = 1e-7
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
def get_query_kv_buffered(self, idx):
# not actually buffered
result = self.prop_net.get_query_values(self.images[:,idx].cuda())
return result
def do_pass(self, key_k, key_v, idx, end_idx):
"""
key_k, key_v - Memory feature of the starting frame
idx - Frame index of the starting frame
end_idx - Frame index at which we stop the propagation
"""
closest_ti = end_idx
K, CK, _, H, W = key_k.shape
_, CV, _, _, _ = key_v.shape
keys = key_k
values = key_v
prev_in_mem = True
prev_key = prev_value = None
last_ti = idx
# Note that we never reach closest_ti, just the frame before it
this_range = range(idx+1, closest_ti)
end = closest_ti - 1
for ti in this_range:
if prev_in_mem:
# if the previous frame has already been added to the memory bank
this_k = keys
this_v = values
else:
# append it to a temporary memory bank otherwise
this_k = torch.cat([keys, prev_key], 2)
this_v = torch.cat([values, prev_value], 2)
query = self.get_query_kv_buffered(ti)
out_mask = self.prop_net.segment_with_query(this_k, this_v, *query)
out_mask = aggregate_wbg(out_mask, keep_bg=True)
self.prob[:,ti] = out_mask
if ti != end:
# Memorize this frame
prev_key, prev_value = self.prop_net.memorize(self.images[:,ti].cuda(), out_mask[1:])
if abs(ti-last_ti) >= self.mem_freq:
# Make the temporary memory permanent
keys = torch.cat([keys, prev_key], 2)
values = torch.cat([values, prev_value], 2)
last_ti = ti
prev_in_mem = True
else:
prev_in_mem = False
return closest_ti
def interact(self, mask, frame_idx, end_idx):
"""
mask - Input one-hot encoded mask WITHOUT the background class
frame_idx, end_idx - Start and end idx of propagation
"""
mask, _ = pad_divide_by(mask.cuda(), 16)
self.prob[:, frame_idx] = aggregate_wbg(mask, keep_bg=True)
# KV pair for the interacting frame
key_k, key_v = self.prop_net.memorize(self.images[:,frame_idx].cuda(), self.prob[1:,frame_idx].cuda())
# Propagate
self.do_pass(key_k, key_v, frame_idx, end_idx)