forked from SamsungLabs/fbrs_interactive_segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_weights_mx2pt.py
43 lines (30 loc) · 1.17 KB
/
convert_weights_mx2pt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import argparse
from pathlib import Path
from collections import OrderedDict
import mxnet as mx
import torch
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint', type=str, help='The path to the MXNet checkpoint.')
return parser.parse_args()
def main():
args = parse_args()
mx_weights = mx.nd.load(args.checkpoint)
pt_weights = OrderedDict()
for weight_name, data in mx_weights.items():
pt_weight = torch.tensor(data.asnumpy(), device='cuda:0')
pt_name = convert_mx2pt(weight_name, mx_weights)
pt_weights[pt_name] = pt_weight
mx_weights_path = Path(args.checkpoint)
pt_weights_path = mx_weights_path.parent / (mx_weights_path.stem + '.pth')
with open(pt_weights_path, 'wb') as f:
torch.save(pt_weights, f)
print(f'Converted weights saved to {pt_weights_path}')
def convert_mx2pt(x, weights_names):
if x.endswith('.beta') and x[:-4] + 'running_var' in weights_names:
x = x.replace('.beta', '.bias')
if x.endswith('.gamma') and x[:-5] + 'running_var' in weights_names:
x = x.replace('.gamma', '.weight')
return x
if __name__ == '__main__':
main()