-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHarshit.py
235 lines (233 loc) · 11.9 KB
/
Harshit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Build a binary classifier to predict whether a customer will subscribe to bank campaign scheme
# Importing the packages
import pandas as pd
import numpy as np
import os
from sklearn.model_selection import train_test_split as tts
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as ss
from sklearn.model_selection import GridSearchCV as GSC
from sklearn.linear_model import LogisticRegression as LR
from imblearn.over_sampling import SMOTE,ADASYN
from sklearn.svm import SVC
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import accuracy_score as ase
from sklearn.metrics import recall_score as rs
from sklearn.metrics import roc_auc_score as auc_score
import tensorflow
import keras
from keras.models import Sequential
from keras.layers import Activation
from keras.layers import Dense
from keras.utils import np_utils
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
import xgboost as xgb
import itertools
import warnings
import operator
warnings.filterwarnings("ignore")
class Harshit:
def __init__ (self):
# Get the directory which containes the data file
os.chdir("c:/Users/Harshit Mehta/Desktop/bank-additional/bank-additional/")
# Readng files
self.df = pd.read_csv("bank-additional-full.csv",sep=";")
self.df=self.df.sample(frac=1)
self.df1=self.df.drop(["duration","loan"],axis=1)# duration data is generally not available. loan not a good predictor using chi test
self.df1['y'] = self.df1['y'].map(dict(yes=1, no=0))
self.df1["previous"]=self.df1.apply(lambda x:self.remove_outliers(x),axis=1)
def remove_outliers(self,x):
if (x["previous"]!=0 and x["pdays"]==999):return 0
else:return x["previous"]
def ballpark_model(self):
self.x_train,self.x_test,self.y_train,self.y_test=tts(pd.get_dummies(self.df1.drop(["y"],axis=1),drop_first=True),self.df1["y"],test_size=0.2,stratify=self.df1["y"],random_state=29)
self.clf=LR(random_state=29,tol=0.00000000001)
self.model=self.clf.fit(self.x_train,self.y_train)
def correlation_numerical_features(self):
plt.figure(figsize=(15,10))
corr=self.df1.select_dtypes(["int64","float64"]).corr()
sns.heatmap(corr,vmin=0,vmax=1,annot=True)
plt.show()
def chi_square_test(self):
chi_square_value=[]
value=[]
cat_columns=[]
for i in self.df.drop(["y"],axis=1).columns:
if self.df[i].dtype=="object":
observed=pd.crosstab(self.df[i],self.df1["y"])
c, p, dof, expected = ss.chi2_contingency(observed)
cat_columns.append(i)
value.append(p)
chi_square_value.append(c)
categorical_target_chi_value=pd.DataFrame({"column":cat_columns,"chi_value":chi_square_value,"p-value":value})
categorical_target_chi_value["importance"]=categorical_target_chi_value["p-value"].apply(self.importance)
plt.figure(figsize=(20,10))
plt.title("p value of categorical variable with target variable")
sns.stripplot(x="column",y="p-value",hue="importance",data=categorical_target_chi_value,size=15)
def importance(self,x):
if x<0.05: return "important"
else: return "not important"
def contacted(self,x):
if x==999: return "not contacted previously"
else: return "contacted"
def current_campaign_contact(self,x):
if x==1: return "Less than 1"
elif x==2:return "two"
elif x==3:return "three"
else: return "more than 3 "
def contacts_performed(self,x):
if x==0: return "not contacted "
else: return "contacted"
def employed_cat(self,x):
if x<=5099.1:return"Level 1"
elif x<=5191.0 and x>5099.1:return "Level 2"
else: return "Level 3"
def emp_var_rate(self,x):
if x<=-1.8:return"first_bin"
elif x>-1.8 and x<=-0.1:return "Second_bin"
else: return "Third_bin"
def transformation(self):
self.df1["pev_count_of_contacts"]=self.df1["previous"].apply(self.contacts_performed)
self.df1["contacted"]=self.df1["pdays"].apply(self.contacted)
self.df1["current_count_of_contacts"]=self.df1["campaign"].apply(self.current_campaign_contact)
self.df1["nr.employed_cat"]=self.df1["nr.employed"].apply(self.employed_cat)
self.df1["emp.var.rate_cat"]=self.df1["emp.var.rate"].apply(self.emp_var_rate)
self.df1=self.df1.drop(["emp.var.rate","nr.employed"],axis=1)
self.interaction_features()
def interaction_features(self):
#1-hot encoding categorical features for XGBoost
self.cat=["job","marital","education","default","housing","contact","month","day_of_week","poutcome","pev_count_of_contacts",
"contacted","current_count_of_contacts","nr.employed_cat","emp.var.rate_cat"]
self.cont=["age","campaign","pdays","previous","cons.price.idx","cons.conf.idx","euribor3m"]
self.cat_encoded=[]
for i in self.cat:
temp = pd.get_dummies(self.df1[i], prefix=i, drop_first=True)
self.df1[temp.columns] = temp
self.cat_encoded.extend(temp.columns)
#Interaction in continuous variables
self.cont_inter = []
for i, j in itertools.combinations(self.cont,2):
self.df1[i+"_"+j]=self.df1[i]*self.df1[j]
self.cont_inter.append(i+"_"+j)
#Interaction between continuous and 1-hot categorical variable
self.cat_cont=[]
for i in self.cat_encoded:
for j in self.cont:
self.df1[i+"_"+j]=self.df1[i]*self.df1[j]
self.cat_cont.append(i+'_'+j)
def Xgboost_GridSearchCV(self):
self.df1=self.df1.drop(self.cat,axis=1)
self.x_train,self.x_test,self.y_train,self.y_test=tts(self.df1.drop(["y"],axis=1),self.df1["y"],test_size=0.2,stratify=self.df1["y"],random_state=29)
self.clf=xgb.XGBClassifier(learning_rate=.01,n_estimators=80,random_state=29,scale_pos_weight=8.025803310613437,n_jobs=-1,objective="binary:logistic",booster="gbtree")
#learning_rate=[.01,.02,.05,0.1,0.2]
#n_estimators=[80,90,100]
#params={"learning_rate":learning_rate,"n_estimators":n_estimators}
#self.xgboost_tuned=GSC(self.model,params,cv=2,scoring="recall",n_jobs=-1)
#self.model=self.xgboost_tuned.best_estimator_
self.model=self.clf.fit(self.x_train,self.y_train)
#self.top_10_features()
def logistic_model_using_pca_plus_prediction(self):
self.clf=LR(random_state=29,tol=0.000000000001)
self.data4=self.df1.drop(["y"],axis=1)
Y=self.df1["y"]
scaler=StandardScaler()
self.data4=scaler.fit_transform(self.data4)
pca=PCA(n_components=100)# 100 by optimal number of principal components needed
x=pca.fit_transform(self.data4)
x_train1,x_test1,y_train1,y_test1=tts(x,Y,test_size=0.2,stratify=Y,random_state=29)
self.model=self.clf.fit(x_train1,y_train1)
probs = self.model.predict_proba(x_test1)
prob1 = self.model.predict_proba(x_train1)
#y_pred=self.model.predict(x_test1)
preds = probs[:,1]
self.fpr, self.tpr, self.threshold = roc_curve(y_train1, prob1[:,1])
optimal_idx = np.argmax(self.tpr - self.fpr)
self.optimal=self.threshold[optimal_idx]
self.out1=pd.DataFrame({"y_true":y_test1,"y_pred":preds})
self.out1["predicted_class"]=self.out1["y_pred"].apply(self.class_value)
print(rs(self.out1["y_true"],self.out1["predicted_class"]))
print(ase(self.out1["y_true"],self.out1["predicted_class"]))
print(auc_score(y_test1,preds))
def class_value(self,x):
if x>=self.optimal:return 1
else: return 0
def keras_nn_model(self):
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
self.model1 = Sequential()
self.model1.add(Dense(256, input_dim=428, activation='relu'))
self.model1.add(Dense(128,activation='relu'))
self.model1.add(Dense(64,activation='relu'))
self.model1.add(Dense(4,activation='relu'))
self.model1.add(Dense(1, activation='sigmoid'))
scaler=StandardScaler()
scaled=scaler.fit(self.x_train)
self.X_train=scaled.fit_transform(self.x_train)
self.X_test=scaled.fit_transform(self.x_test)
adam=keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
self.model1.compile(optimizer=adam, loss=keras.losses.binary_crossentropy)
self.model1.fit(self.X_train,self.y_train,epochs=1,batch_size=256,class_weight={0:1,1:8})
pred=self.model1.predict(self.X_test)
pred1=self.model1.predict(self.X_train)
print(auc_score(self.y_test,pred))
self.fpr, self.tpr, self.threshold = roc_curve(self.y_train, pred1.ravel())
optimal_idx = np.argmax(self.tpr - self.fpr)
self.optimal=self.threshold[optimal_idx]
# for recall calculation
self.out=pd.DataFrame({"y_true":self.y_test,"y_pred":pred.ravel()})
self.out["predicted_class"]=self.out["y_pred"].apply(self.class_value)
print(rs(self.out["y_true"],self.out["predicted_class"]))
print(ase(self.out["y_true"],self.out["predicted_class"]))
#def Oversampling_technique(self):
#sm=SMOTE(random_state=29)
#self.x_train1,self.y_trai1n=sm.fit_sample(self.x_train,self.y_train)
#def xgboost_prediction_smote(self):
#model=xgb.XGBClassifier(random_state=29,scale_pos_weight=1,n_jobs=-1,objective="binary:logistic",booster="gbtree")
#clf=model.fit(self.x_train1,self.y_train1)
#probs = clf.predict_proba(self.x_test.values)
#y_pred=clf.predict(self.x_test.values)
#preds = probs[:,1]
#print(ase(self.y_test.values,y_pred))
#print(rs(self.y_test.values,y_pred))
#print(auc_score(self.y_test.values,preds))
def prediction_on_test(self):
self.probs = self.model.predict_proba(self.x_test)
#self.y_pred=self.model.predict(self.x_test)
self.preds = self.probs[:,1]
self.prob1=self.model.predict_proba(self.x_train)
#print(ase(self.y_test,self.y_pred))
self.fpr, self.tpr, self.threshold = roc_curve(self.y_train, self.prob1[:,1])
optimal_idx = np.argmax(self.tpr - self.fpr)
self.optimal=self.threshold[optimal_idx]
self.out1=pd.DataFrame({"y_true":self.y_test,"y_pred":self.preds})
self.out1["predicted_class"]=self.out1["y_pred"].apply(self.class_value)
print(rs(self.out1["y_true"],self.out1["predicted_class"]))
print(ase(self.out1["y_true"],self.out1["predicted_class"]))
#print(rs(self.y_test,self.y_pred))
print(auc_score(self.y_test,self.preds))
def top_10_features(self):
lis=self.x_train.columns
feat_imp = {lis[i]:self.model.feature_importances_[i] for i in range(len(lis))}
sorted_feat=sorted(feat_imp.items(),key=operator.itemgetter(1),reverse=True)
feature_dataframe=pd.DataFrame.from_dict(sorted_feat)
feature_dataframe.columns=["feature","importance"]
plt.figure(figsize=(20,15))
sns.stripplot("feature","importance",data=feature_dataframe.iloc[:10,],size=10)
if __name__ == "__main__":
Hm = Harshit()
Hm.ballpark_model()
# prediction using ballpark model
Hm.prediction_on_test()
#correlation between numerical attributes originally present
Hm.correlation_numerical_features()
Hm.chi_square_test()
Hm.transformation()
Hm.Xgboost_GridSearchCV()
# prediction using xgboost model
Hm.prediction_on_test()
Hm.logistic_model_using_pca_plus_prediction()
Hm.keras_nn_model()