diff --git a/docs/docs/modules/model_io/prompts/prompt_templates/index.ipynb b/docs/docs/modules/model_io/prompts/prompt_templates/index.ipynb new file mode 100644 index 0000000000000..a7c4d497e08f1 --- /dev/null +++ b/docs/docs/modules/model_io/prompts/prompt_templates/index.ipynb @@ -0,0 +1,386 @@ +{ + "cells": [ + { + "cell_type": "raw", + "id": "77dd0c90-94d7-4acd-a360-e977b39d0a8f", + "metadata": {}, + "source": [ + "---\n", + "sidebar_position: 0\n", + "title: Prompt templates\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "2d98412d-fc53-42c1-aed8-f1f8eb9ada58", + "metadata": {}, + "source": [ + "Prompt templates are pre-defined recipes for generating prompts for language models.\n", + "\n", + "A template may include instructions, few-shot examples, and specific context and\n", + "questions appropriate for a given task.\n", + "\n", + "LangChain provides tooling to create and work with prompt templates.\n", + "\n", + "LangChain strives to create model agnostic templates to make it easy to reuse\n", + "existing templates across different language models.\n", + "\n", + "Typically, language models expect the prompt to either be a string or else a list of chat messages.\n", + "\n", + "## `PromptTemplate`\n", + "\n", + "Use `PromptTemplate` to create a template for a string prompt.\n", + "\n", + "By default, `PromptTemplate` uses [Python's str.format](https://docs.python.org/3/library/stdtypes.html#str.format)\n", + "syntax for templating." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a5bc258b-87d2-486b-9785-edf5b23fd179", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Tell me a funny joke about chickens.'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.prompts import PromptTemplate\n", + "\n", + "prompt_template = PromptTemplate.from_template(\n", + " \"Tell me a {adjective} joke about {content}.\"\n", + ")\n", + "prompt_template.format(adjective=\"funny\", content=\"chickens\")" + ] + }, + { + "cell_type": "markdown", + "id": "d54c803c-0f80-412d-9156-b8390e0265c0", + "metadata": {}, + "source": [ + "The template supports any number of variables, including no variables:n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "63bd7ac3-5cf6-4eb2-8205-d1a01029b56a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Tell me a joke'" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.prompts import PromptTemplate\n", + "\n", + "prompt_template = PromptTemplate.from_template(\n", + "\"Tell me a joke\"\n", + ")\n", + "prompt_template.format()" + ] + }, + { + "cell_type": "markdown", + "id": "69f7c948-9f78-431a-a466-8038e6b6f856", + "metadata": {}, + "source": [ + "For additional validation, specify `input_variables` explicitly. These variables\n", + "will be compared against the variables present in the template string during instantiation, **raising an exception if\n", + "there is a mismatch**. For example:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "617d7b2c-7308-4e74-9cc9-96ee0b7a13ac", + "metadata": {}, + "outputs": [ + { + "ename": "ValidationError", + "evalue": "1 validation error for PromptTemplate\n__root__\n Invalid prompt schema; check for mismatched or missing input parameters. 'content' (type=value_error)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValidationError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[19], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlangchain\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mprompts\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PromptTemplate\n\u001b[0;32m----> 3\u001b[0m invalid_prompt \u001b[38;5;241m=\u001b[39m \u001b[43mPromptTemplate\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_variables\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43madjective\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mtemplate\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mTell me a \u001b[39;49m\u001b[38;5;132;43;01m{adjective}\u001b[39;49;00m\u001b[38;5;124;43m joke about \u001b[39;49m\u001b[38;5;132;43;01m{content}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 6\u001b[0m \u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/langchain/libs/langchain/langchain/load/serializable.py:97\u001b[0m, in \u001b[0;36mSerializable.__init__\u001b[0;34m(self, **kwargs)\u001b[0m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m---> 97\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 98\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_lc_kwargs \u001b[38;5;241m=\u001b[39m kwargs\n", + "File \u001b[0;32m~/langchain/.venv/lib/python3.9/site-packages/pydantic/main.py:341\u001b[0m, in \u001b[0;36mpydantic.main.BaseModel.__init__\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValidationError\u001b[0m: 1 validation error for PromptTemplate\n__root__\n Invalid prompt schema; check for mismatched or missing input parameters. 'content' (type=value_error)" + ] + } + ], + "source": [ + "from langchain.prompts import PromptTemplate\n", + "\n", + "invalid_prompt = PromptTemplate(\n", + " input_variables=[\"adjective\"],\n", + " template=\"Tell me a {adjective} joke about {content}.\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "2715fd80-e294-49ca-9fc2-5a012949ed8a", + "metadata": {}, + "source": [ + "You can create custom prompt templates that format the prompt in any way you want.\n", + "For more information, see [Custom Prompt Templates](./custom_prompt_template.html).\n", + "\n", + "## `ChatPromptTemplate`\n", + "\n", + "The prompt to [chat models](../models/chat) is a list of chat messages.\n", + "\n", + "Each chat message is associated with content, and an additional parameter called `role`.\n", + "For example, in the OpenAI [Chat Completions API](https://platform.openai.com/docs/guides/chat/introduction), a chat message can be associated with an AI assistant, a human or a system role.\n", + "\n", + "Create a chat prompt template like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "d088d53c-0e20-4fb9-9d54-b0e989b998b0", + "metadata": {}, + "outputs": [], + "source": [ + "from langchain.prompts import ChatPromptTemplate\n", + "\n", + "chat_template = ChatPromptTemplate.from_messages([\n", + " (\"system\", \"You are a helpful AI bot. Your name is {name}.\"),\n", + " (\"human\", \"Hello, how are you doing?\"),\n", + " (\"ai\", \"I'm doing well, thanks!\"),\n", + " (\"human\", \"{user_input}\"),\n", + "])\n", + "\n", + "messages = chat_template.format_messages(\n", + " name=\"Bob\",\n", + " user_input=\"What is your name?\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "d1e7e3ef-ba7d-4ca5-a95c-a0488c9679e5", + "metadata": {}, + "source": [ + "`ChatPromptTemplate.from_messages` accepts a variety of message representations.\n", + "\n", + "For example, in addition to using the 2-tuple representation of (type, content) used\n", + "above, you could pass in an instance of `MessagePromptTemplate` or `BaseMessage`." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "f6632eda-582f-4f29-882f-108587f0397c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AIMessage(content='I absolutely love indulging in delicious treats!')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from langchain.chat_models import ChatOpenAI\n", + "from langchain.prompts import HumanMessagePromptTemplate\n", + "from langchain.schema.messages import SystemMessage\n", + "\n", + "chat_template = ChatPromptTemplate.from_messages(\n", + " [\n", + " SystemMessage(\n", + " content=(\n", + " \"You are a helpful assistant that re-writes the user's text to \"\n", + " \"sound more upbeat.\"\n", + " )\n", + " ),\n", + " HumanMessagePromptTemplate.from_template(\"{text}\"),\n", + " ]\n", + ")\n", + "\n", + "llm = ChatOpenAI()\n", + "llm(chat_template.format_messages(text='i dont like eating tasty things.'))" + ] + }, + { + "cell_type": "markdown", + "id": "8c4b46da-d51b-4801-955f-ba4bf139162f", + "metadata": {}, + "source": [ + "This provides you with a lot of flexibility in how you construct your chat prompts." + ] + }, + { + "cell_type": "markdown", + "id": "3a5fe78c-572c-4e87-b02f-7d33126fb605", + "metadata": {}, + "source": [ + "## LCEL\n", + "\n", + "`PromptTemplate` and `ChatPromptTemplate` implement the [Runnable interface](/docs/expression_language/interface), the basic building block of the [LangChain Expression Language (LCEL)](/docs/expression_language/). This means they support `invoke`, `ainvoke`, `stream`, `astream`, `batch`, `abatch`, `astream_log` calls.\n", + "\n", + "`PromptTemplate` accepts a dictionary (of the prompt variables) and returns a `StringPromptValue`. A `ChatPromptTemplate` accepts a dictionary and returns a `ChatPromptValue`." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "0f0e860b-95e0-4653-8bab-c5d58b0f7d67", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "StringPromptValue(text='Tell me a joke')" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt_val = prompt_template.invoke({\"adjective\": \"funny\", \"content\": \"chickens\"})\n", + "prompt_val" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c0dac782-5144-4489-8d77-eba47f1cd1c4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'Tell me a joke'" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt_val.to_string()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a8e3ac32-f690-4d3d-bcb2-27b7931beab2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[HumanMessage(content='Tell me a joke')]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prompt_val.to_messages()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "4516257f-0c3b-4851-9e82-8c9e09111444", + "metadata": {}, + "outputs": [], + "source": [ + "chat_val = chat_template.invoke({\"text\": 'i dont like eating tasty things.'})" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "7adfe927-ba1d-425f-904c-0328e1a10c18", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[SystemMessage(content=\"You are a helpful assistant that re-writes the user's text to sound more upbeat.\"),\n", + " HumanMessage(content='i dont like eating tasty things.')]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chat_val.to_messages()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "37c9e2e4-a2e8-48a9-a732-01c025a21362", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\"System: You are a helpful assistant that re-writes the user's text to sound more upbeat.\\nHuman: i dont like eating tasty things.\"" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "chat_val.to_string()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "poetry-venv", + "language": "python", + "name": "poetry-venv" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.1" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/docs/modules/model_io/prompts/prompt_templates/index.mdx b/docs/docs/modules/model_io/prompts/prompt_templates/index.mdx deleted file mode 100644 index 6f6d36124c960..0000000000000 --- a/docs/docs/modules/model_io/prompts/prompt_templates/index.mdx +++ /dev/null @@ -1,133 +0,0 @@ ---- -sidebar_position: 0 ---- - -# Prompt templates - -Prompt templates are pre-defined recipes for generating prompts for language models. - -A template may include instructions, few-shot examples, and specific context and -questions appropriate for a given task. - -LangChain provides tooling to create and work with prompt templates. - -LangChain strives to create model agnostic templates to make it easy to reuse -existing templates across different language models. - -Typically, language models expect the prompt to either be a string or else a list of chat messages. - -## Prompt template - -Use `PromptTemplate` to create a template for a string prompt. - -By default, `PromptTemplate` uses [Python's str.format](https://docs.python.org/3/library/stdtypes.html#str.format) -syntax for templating; however other templating syntax is available (e.g., `jinja2`). - -```python -from langchain.prompts import PromptTemplate - -prompt_template = PromptTemplate.from_template( - "Tell me a {adjective} joke about {content}." -) -prompt_template.format(adjective="funny", content="chickens") -``` - - - -``` -"Tell me a funny joke about chickens." -``` - - - -The template supports any number of variables, including no variables: - -```python -from langchain.prompts import PromptTemplate - -prompt_template = PromptTemplate.from_template( -"Tell me a joke" -) -prompt_template.format() -``` - -For additional validation, specify `input_variables` explicitly. These variables -will be compared against the variables present in the template string during instantiation, raising an exception if -there is a mismatch; for example, - -```python -from langchain.prompts import PromptTemplate - -invalid_prompt = PromptTemplate( - input_variables=["adjective"], - template="Tell me a {adjective} joke about {content}." -) -``` - -You can create custom prompt templates that format the prompt in any way you want. -For more information, see [Custom Prompt Templates](./custom_prompt_template.html). - - - -## Chat prompt template - -The prompt to [chat models](../models/chat) is a list of chat messages. - -Each chat message is associated with content, and an additional parameter called `role`. -For example, in the OpenAI [Chat Completions API](https://platform.openai.com/docs/guides/chat/introduction), a chat message can be associated with an AI assistant, a human or a system role. - -Create a chat prompt template like this: - -```python -from langchain.prompts import ChatPromptTemplate - -template = ChatPromptTemplate.from_messages([ - ("system", "You are a helpful AI bot. Your name is {name}."), - ("human", "Hello, how are you doing?"), - ("ai", "I'm doing well, thanks!"), - ("human", "{user_input}"), -]) - -messages = template.format_messages( - name="Bob", - user_input="What is your name?" -) -``` - -`ChatPromptTemplate.from_messages` accepts a variety of message representations. - -For example, in addition to using the 2-tuple representation of (type, content) used -above, you could pass in an instance of `MessagePromptTemplate` or `BaseMessage`. - -```python -from langchain.prompts import ChatPromptTemplate -from langchain.prompts.chat import SystemMessage, HumanMessagePromptTemplate - -template = ChatPromptTemplate.from_messages( - [ - SystemMessage( - content=( - "You are a helpful assistant that re-writes the user's text to " - "sound more upbeat." - ) - ), - HumanMessagePromptTemplate.from_template("{text}"), - ] -) - -from langchain.chat_models import ChatOpenAI - -llm = ChatOpenAI() -llm(template.format_messages(text='i dont like eating tasty things.')) -``` - - - -``` -AIMessage(content='I absolutely adore indulging in delicious treats!', additional_kwargs={}, example=False) -``` - - - -This provides you with a lot of flexibility in how you construct your chat prompts. -