-
Notifications
You must be signed in to change notification settings - Fork 15
/
main.py
677 lines (561 loc) · 26.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import yaml
import pandas as pd
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from sklearn.model_selection import train_test_split
import string
import numpy as np
import json
from rich.console import Console
from rich.table import Table
from rich.markdown import Markdown
from rich.pretty import pprint
import sys
from transformers import AutoTokenizer
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
from torch.nn.functional import softmax
from tqdm import tqdm
from sklearn.preprocessing import OneHotEncoder, StandardScaler, LabelEncoder, MinMaxScaler
import logging
import torch
import torch.nn as nn
import torch.nn.functional as F
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('punkt_tab')
logging.basicConfig(filename="logs/modelforge.log", filemode='w',level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class Loader:
def __init__(self, config_path):
self.config = self.load_config(config_path)
self.data = None
def load_config(self, config_path):
logging.info(f"Loading config from {config_path}")
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
logging.info("Config loaded successfully")
return config
def load_dataset(self):
dataset_config = self.config['dataset']
logging.info(f"Loading dataset from {dataset_config['path']}")
self.data = pd.read_csv(dataset_config['path'], delimiter=dataset_config['delimiter'], encoding='utf-8', encoding_errors='ignore')
logging.info("Dataset loaded successfully")
return self.data
class DataCleaner:
def __init__(self, config):
self.config = config
def clean_data(self, data):
logging.info("Cleaning data")
data.dropna(inplace=True)
data.drop_duplicates(inplace=True)
logging.info("Data cleaned successfully")
return data
class TextPreprocessor:
def __init__(self, config):
self.config = config['preprocessing']['text']
def preprocess_text(self, text):
if self.config.get('lower_case'):
text = text.lower()
if self.config.get('remove_punctuation'):
text = text.translate(str.maketrans('', '', string.punctuation))
tokens = self.tokenize_text(text)
if self.config.get('remove_stopwords'):
stop_words = set(stopwords.words('english'))
tokens = [word for word in tokens if word not in stop_words]
if self.config.get('stemming'):
stemmer = nltk.PorterStemmer()
tokens = [stemmer.stem(word) for word in tokens]
return ' '.join(tokens)
def tokenize_text(self, text):
method = self.config['tokenization']['method']
if method == 'word':
tokens = word_tokenize(text)
elif method == 'sentence':
tokens = nltk.sent_tokenize(text)
else:
raise ValueError(f"Unsupported tokenization method: {method}")
return tokens
def preprocess_dataset(self, data):
logging.info("Preprocessing dataset")
data['text'] = data['text'].apply(lambda x: self.preprocess_text(x))
return data
class DataSplitter:
def __init__(self, config):
self.config = config['preprocessing']['split']
self.train_data = None
self.test_data = None
self.validation_data = None
def split_data(self, data):
train_percent = self.config['train']
test_percent = self.config['test']
validation_percent = self.config['validation']
random_seed = self.config.get('random_seed', None)
# Calculate the sizes for each split
test_size = test_percent / (test_percent + validation_percent)
validation_size = validation_percent / (test_percent + validation_percent)
# Shuffle the data
data = data.sample(frac=1, random_state=random_seed).reset_index(drop=True)
# First split: into training and remaining data (test + validation)
self.train_data, remaining_data = train_test_split(data, test_size=(test_percent + validation_percent), random_state=random_seed)
# Second split: remaining data into test and validation sets
self.test_data, self.validation_data = train_test_split(remaining_data, test_size=test_size, random_state=random_seed)
self.save_hdf5()
logging.info("Data split successfully")
return self.train_data, self.test_data, self.validation_data
def save_hdf5(self):
logging.info("Saving datasets to HDF5 files")
self.train_data.to_hdf(f'preprocessed-data/dataset.training.hdf5', key='train', mode='w')
print("\nWriting preprocessed training set to preprocessed-data/dataset.training.hdf5")
self.test_data.to_hdf(f'preprocessed-data/dataset.test.hdf5', key='test', mode='w')
print("Writing preprocessed test set to preprocessed-data/dataset.test.hdf5")
self.validation_data.to_hdf(f'preprocessed-data/dataset.validation.hdf5', key='validation', mode='w')
print("Writing preprocessed validation set to preprocessed-data/dataset.validation.hdf5\n")
class ParallelCNN(nn.Module):
def __init__(self, config):
super(ParallelCNN, self).__init__()
self.embedding = nn.Embedding(config['params']['vocab_size'], config['params']['embedding_size'])
self.convs = nn.ModuleList([
nn.Conv2d(1, config['params']['num_filters'], (k, config['params']['embedding_size']))
for k in config['params']['filter_sizes']
])
self.fc_layers = nn.ModuleList([
nn.Linear(config['params']['num_filters'] * len(config['params']['filter_sizes']), config['params']['fc_size'])
for _ in range(config['params']['num_fc_layers'])
])
self.dropout = nn.Dropout(config['params']['dropout'])
self.output_layer = nn.Linear(config['params']['fc_size'], config['params']['output_size'])
def forward(self, x):
x = self.embedding(x).unsqueeze(1)
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs]
x = [F.max_pool1d(i, i.size(2)).squeeze(2) for i in x]
x = torch.cat(x, 1)
for fc in self.fc_layers:
x = self.dropout(F.relu(fc(x)))
x = self.output_layer(x)
return x
class RNNEncoder(nn.Module):
def __init__(self, config):
super(RNNEncoder, self).__init__()
self.config = config['params']
self.embedding_size = self.config['embedding_size']
self.hidden_size = self.config['state_size']
self.output_size = self.config['output_size']
self.num_layers = self.config['num_layers']
self.bidirectional = self.config['bidirectional']
self.cell_type = self.config['cell_type']
self.representation = self.config['representation']
self.recurrent_dropout = self.config['recurrent_dropout']
self.recurrent_initializer = self.config['recurrent_initializer']
self.use_bias = self.config['use_bias']
self.weights_initializer = self.config['weights_initializer']
self.unit_forget_bias = self.config['unit_forget_bias']
self.reduce_output = self.config['reduce_output']
self.num_fc_layers = self.config['num_fc_layers']
self.norm = self.config['norm']
self.vocab_size = self.config['vocab_size']
# Embedding layer
self.embedding = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.embedding_size)
# RNN cell
if self.cell_type == 'rnn':
self.rnn = nn.RNN(self.embedding_size,
self.hidden_size,
num_layers=self.num_layers,
bidirectional=self.bidirectional,
dropout=self.recurrent_dropout,
batch_first=True)
elif self.cell_type == 'lstm':
self.rnn = nn.LSTM(self.embedding_size,
self.hidden_size,
num_layers=self.num_layers,
bidirectional=self.bidirectional,
dropout=self.recurrent_dropout,
batch_first=True)
elif self.cell_type == 'gru':
self.rnn = nn.GRU(self.embedding_size,
self.hidden_size,
num_layers=self.num_layers,
bidirectional=self.bidirectional,
dropout=self.recurrent_dropout,
batch_first=True)
self.dropout = nn.Dropout(p=config.get('dropout', 0.0))
# Fully connected layers
self.fc_layers = nn.ModuleList()
if self.num_fc_layers > 0:
input_dim = self.hidden_size * (2 if self.bidirectional else 1)
for _ in range(self.num_fc_layers):
self.fc_layers.append(nn.Linear(input_dim, self.output_size))
input_dim = self.output_size
# Regularization
if self.norm:
self.regularizer = nn.LayerNorm(self.output_size)
else:
self.regularizer = None
def call(self, x):
x = self.embedding(x)
if self.cell_type == 'lstm':
output, (hidden_state, cell_state) = self.rnn(x)
else:
output, hidden_state = self.rnn(x)
output = self.dropout(output)
# Apply representation type
if self.representation == 'dense':
output = output
elif self.representation == 'sparse':
output = torch.sparse.FloatTensor(output)
# Reduce output
if self.reduce_output == 'sum':
output = torch.sum(output, dim=1)
elif self.reduce_output == 'mean':
output = torch.mean(output, dim=1)
elif self.reduce_output == 'last':
output = output[:, -1, :]
# Apply fully connected layers
for fc in self.fc_layers:
output = fc(output)
# Apply regularizer
if self.regularizer:
output = self.regularizer(output)
return output
def encode_data(self, data):
encoded_data = self.call(data)
return encoded_data
class CategoricalEncoder:
def _init_(self, encoding_type='onehot'):
if encoding_type not in ['onehot', 'label']:
raise ValueError("encoding_type should be either 'onehot' or 'label'")
self.encoding_type = encoding_type
self.encoder = None
logging.info(f"categorical encoder initialized")
def fit(self, X):
if self.encoding_type == 'onehot':
self.encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')
self.encoder.fit(X)
elif self.encoding_type == 'label':
self.encoder = {}
for column in X.columns:
le = LabelEncoder()
le.fit(X[column])
self.encoder[column] = le
def transform(self, X):
if self.encoding_type == 'onehot':
return pd.DataFrame(self.encoder.transform(X), columns=self.encoder.get_feature_names_out())
else:
transformed_data = X.copy()
for column in X.columns:
transformed_data[column] = self.encoder[column].transform(X[column])
return transformed_data
def fit_transform(self, X):
self.fit(X)
return self.transform(X)
class NumericalEncoder:
def _init_(self, config):
self.config = config['preprocessing']['numerical']
self.scalers = {}
logging.info(f"numeric encoder initialized")
def fit(self, data):
for feature in self.config:
name = feature['name']
scaler_type = feature.get('scale', 'standard')
if scaler_type == 'standard':
scaler = StandardScaler()
elif scaler_type == 'minmax':
scaler = MinMaxScaler()
else:
raise ValueError(f"Unsupported scaling method: {scaler_type}")
scaler.fit(data[[name]])
self.scalers[name] = scaler
def transform(self, data):
for name, scaler in self.scalers.items():
data[name] = scaler.transform(data[[name]])
return data
class Combiner(nn.Module):
def __init__(self, config):
super(Combiner, self).__init__()
self.config = config
self.combiner_type = config['combiner']['type']
self.output_size = config['combiner']['output_size']
if self.combiner_type == 'concat':
input_size = sum([feature['params']['output_size'] for feature in config['input_features']])
self.combiner = nn.Linear(input_size, self.output_size)
elif self.combiner_type == 'sum':
input_size = config['input_features'][0]['params']['output_size']
self.combiner = nn.Linear(input_size, self.output_size)
else:
raise ValueError(f"Unsupported combiner type: {self.combiner_type}")
def forward(self, encoder_outputs):
if self.combiner_type == 'concat':
combined_output = torch.cat(encoder_outputs, dim=-1)
elif self.combiner_type == 'sum':
combined_output = torch.sum(torch.stack(encoder_outputs), dim=0)
return self.combiner(combined_output)
class CategoricalDecoder:
def _init_(self, encoding_type='onehot'):
if encoding_type not in ['onehot', 'label']:
raise ValueError("encoding_type should be either 'onehot' or 'label'")
self.encoding_type = encoding_type
self.encoder = None
self.column_names = None
logging.info(f"categorical decoder initialized")
def fit(self, encoder, column_names):
self.encoder = encoder
self.column_names = column_names
def inverse_transform(self, X):
if self.encoding_type == 'onehot':
inverse_transformed_data = self.encoder.inverse_transform(X)
return pd.DataFrame(inverse_transformed_data, columns=self.column_names)
else:
transformed_data = X.copy()
for column in self.column_names:
transformed_data[column] = self.encoder[column].inverse_transform(X[column])
return transformed_data
class NumericalDecoder:
def _init_(self, config):
self.config = config['preprocessing']['numerical']
self.scalers = {}
logging.info(f"numerical decoder initialized")
def fit(self, scalers):
self.scalers = scalers
def inverse_transform(self, data):
for name, scaler in self.scalers.items():
data[name] = scaler.inverse_transform(data[[name]])
return data
class Model:
def __init__(self, config):
self.config = config
self.MODEL = "cardiffnlp/twitter-roberta-base-sentiment"
self.tokenizer = AutoTokenizer.from_pretrained(self.MODEL)
self.model = AutoModelForSequenceClassification.from_pretrained(self.MODEL)
def polarity_scores_roberta(self, example):
encoded_text = self.tokenizer(example, return_tensors='pt')
output = self.model(**encoded_text)
scores = output.logits[0].detach().numpy()
scores = F.softmax(torch.tensor(scores), dim=-1).numpy()
scores_dict = {
'roberta_neg': scores[0],
'roberta_neu': scores[1],
'roberta_pos': scores[2]
}
return scores_dict
def roberta(self, data, num_samples=5):
samples = data.head(num_samples)
results = []
for index, row in samples.iterrows():
text = row['text']
scores = self.polarity_scores_roberta(text)
results.append((text, scores))
return results
def print_results(self, results):
table = Table(title="Results")
table.add_column("Text", justify="left")
table.add_column("Negative", justify="right")
table.add_column("Neutral", justify="right")
table.add_column("Positive", justify="right")
for text, scores in results:
table.add_row(text, f"{scores['roberta_neg']:.4f}", f"{scores['roberta_neu']:.4f}", f"{scores['roberta_pos']:.4f}")
console = Console()
console.print(table)
class RNNDecoder(nn.Module):
def __init__(self, config):
super(RNNDecoder, self).__init__()
self.embedding = nn.Embedding(config['decoder']['vocab_size'], config['decoder']['embedding_size'])
self.lstm = nn.LSTM(config['decoder']['embedding_size'], config['decoder']['hidden_size'], batch_first=True)
self.fc = nn.Linear(config['decoder']['hidden_size'], config['decoder']['vocab_size'])
self.dropout = nn.Dropout(config['decoder']['dropout'])
def forward(self, x, hidden):
x = self.embedding(x)
x, hidden = self.lstm(x, hidden)
x = self.dropout(x)
x = self.fc(x)
return x, hidden
class TransformerModel(nn.Module):
def __init__(self, vocab_size, d_model, num_heads, num_layers, dim_feedforward, max_seq_len, num_classes, dropout=0.1):
super().__init__()
self.embedding = nn.Embedding(vocab_size, d_model)
self.positional_encoding = self.PositionalEncoding(d_model, max_seq_len)
self.encoder = self.TransformerEncoder(num_layers, d_model, num_heads, dim_feedforward, dropout)
self.decoder = self.TransformerDecoder(num_layers, d_model, num_heads, dim_feedforward, dropout)
self.fc = nn.Linear(d_model, num_classes)
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
src = self.embedding(src)
src = self.positional_encoding(src)
memory = self.encoder(src, src_mask)
tgt = self.embedding(tgt)
tgt = self.positional_encoding(tgt)
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=src_mask)
output = output.mean(dim=1) # Aggregate over sequence length
output = self.fc(output)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super().__init__()
self.encoding = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1).float()
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(torch.log(torch.tensor(10000.0)) / d_model))
self.encoding[:, 0::2] = torch.sin(position * div_term)
self.encoding[:, 1::2] = torch.cos(position * div_term)
self.encoding = self.encoding.unsqueeze(0)
def forward(self, x):
return x + self.encoding[:, :x.size(1)].detach()
class TransformerEncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, dim_feedforward, dropout=0.1):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
def forward(self, src, mask=None):
src2 = self.self_attn(src, src, src, attn_mask=mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class TransformerEncoder(nn.Module):
def __init__(self, num_layers, d_model, num_heads, dim_feedforward, dropout):
super().__init__()
self.layers = nn.ModuleList([
TransformerModel.TransformerEncoderLayer(d_model, num_heads, dim_feedforward, dropout)
for _ in range(num_layers)
])
def forward(self, src, mask=None):
for layer in self.layers:
src = layer(src, mask)
return src
class TransformerDecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, dim_feedforward, dropout):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
self.multihead_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout)
self.ffn = nn.Sequential(
nn.Linear(d_model, dim_feedforward),
nn.ReLU(),
nn.Linear(dim_feedforward, d_model)
)
self.layer_norm1 = nn.LayerNorm(d_model)
self.layer_norm2 = nn.LayerNorm(d_model)
self.layer_norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
# Self-attention
tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask)[0]
tgt = tgt + self.dropout(tgt2)
tgt = self.layer_norm1(tgt)
# Multi-head attention
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask)[0]
tgt = tgt + self.dropout(tgt2)
tgt = self.layer_norm2(tgt)
# Feed-forward network
tgt2 = self.ffn(tgt)
tgt = tgt + self.dropout(tgt2)
tgt = self.layer_norm3(tgt)
return tgt
class TransformerDecoder(nn.Module):
def __init__(self, num_layers, d_model, num_heads, dim_feedforward, dropout):
super().__init__()
self.layers = nn.ModuleList([
TransformerModel.TransformerDecoderLayer(d_model, num_heads, dim_feedforward, dropout)
for _ in range(num_layers)
])
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None):
for layer in self.layers:
tgt = layer(tgt, memory, tgt_mask, memory_mask)
return tgt
class LayerNormalization(nn.Module):
def __init__(self, parameters_shape, eps=1e-5):
super().__init__()
self.gamma = nn.Parameter(torch.ones(parameters_shape))
self.beta = nn.Parameter(torch.zeros(parameters_shape))
self.eps = eps
def forward(self, input):
dims = [-(i + 1) for i in range(len(input.size()) - 1)]
mean = input.mean(dim=dims, keepdim=True)
var = ((input - mean) ** 2).mean(dim=dims, keepdim=True)
std = (var + self.eps).sqrt()
y = (input - mean) / std
out = self.gamma * y + self.beta
return out
class ModelArch(nn.Module):
def __init__(self, config):
super(ModelArch, self).__init__()
self.encoders = nn.ModuleList()
for feature in config['input_features']:
if feature['encoder'] == 'rnn':
self.encoders.append(RNNEncoder(feature))
elif feature['encoder'] == 'parallel_cnn':
self.encoders.append(ParallelCNN(feature))
# Add other encoders here as needed
self.combiner = Combiner(config)
self.decoder = RNNDecoder(config)
self.config = config
def forward(self, encoder_inputs, decoder_input):
encoder_outputs = []
for encoder, input in zip(self.encoders, encoder_inputs):
encoder_outputs.append(encoder(input))
combined_output = self.combiner(encoder_outputs)
# Initialize the hidden state for the decoder
batch_size = combined_output.size(0)
hidden = (torch.zeros(1, batch_size, self.config['decoder']['hidden_size']).to(combined_output.device),
torch.zeros(1, batch_size, self.config['decoder']['hidden_size']).to(combined_output.device))
decoder_output, _ = self.decoder(decoder_input, hidden)
return decoder_output
def main():
if len(sys.argv) != 2:
print("Usage: python script.py <config_path>")
sys.exit(1)
config_path = sys.argv[1]
#config_path = 'config.yaml'
console = Console()
logging.info("Starting main function")
# Load data and config
loader = Loader(config_path)
config = loader.load_config(config_path)
print("\nUser specified config file\n")
pprint(config)
data = loader.load_dataset()
# clean the data
cleaner = DataCleaner(config)
data = cleaner.clean_data(data)
md = Markdown('# Preprocessing')
console.print(md)
# Preprocess data
preprocessor = TextPreprocessor(config)
data = preprocessor.preprocess_dataset(data)
#print(f"Preprocessed data looks like,\n{data.head(5)}\n") #just to verify
# Split data
splitter = DataSplitter(config)
train_set, validation_set, test_set = splitter.split_data(data)
table = Table(title=f"Dataset statistics\nTotal datset: {len(train_set)+len(validation_set)+len(test_set)}")
table.add_column("Dataset", style = "Cyan")
table.add_column("Size (in Rows)")
table.add_column("Size (in memeory)")
table.add_row("Train set", str(len(train_set)), f"{(sys.getsizeof(train_set) / (1024 * 1024)):.2f} Mb")
table.add_row("Validation set", str(len(validation_set)), f"{(sys.getsizeof(validation_set) / (1024 * 1024)):.2f} Mb")
table.add_row("Test set", str(len(test_set)), f"{(sys.getsizeof(test_set) / (1024 * 1024)):.2f} Mb")
console.print(table)
for feature in config['input_features']:
if feature['encoder'] == 'roberta':
model = Model(config)
results = model.roberta(test_set,num_samples=5)
model.print_results(results)
elif feature['encoder'] == 'transformer':
model = TransformerModel(vocab_size=config['model']['vocab_size'],
d_model=config['model']['d_model'],
num_heads=config['model']['num_heads'],
num_layers=config['model']['num_layers'],
dim_feedforward=config['model']['dim_feedforward'],
max_seq_len=config['model']['max_seq_len'],
num_classes=config['model']['num_classes'],
dropout=config['model']['dropout'])
print(model)
else:
model = ModelArch(config)
print(model)
if __name__ == "__main__":
main()