Skip to content

Latest commit

 

History

History
110 lines (83 loc) · 3.63 KB

File metadata and controls

110 lines (83 loc) · 3.63 KB

automatic-mixed-precision-tutorials-pytorch

Automatic Mixed Precision Tutorials using pytorch. Based on PyTorch 1.6 Official Features (Automatic Mixed Precision), implement classification codebase using custom dataset.

0. Experimental Setup (I used 1 GTX 1080 Ti GPU and 1 RTX 2080 Ti GPU!)

0-1. Prepare Library

  • Must use Newest PyTorch version. (>= 1.6.0)
pip install -r requirements.txt

0-2. Download dataset (Kaggle Intel Image Classification)

This Data contains around 25k images of size 150x150 distributed under 6 categories. {'buildings' -> 0, 'forest' -> 1, 'glacier' -> 2, 'mountain' -> 3, 'sea' -> 4, 'street' -> 5 }

  • Make data folder and move dataset into data folder.

1. Baseline Training

  • ImageNet Pretrained ResNet-18 from torchvision.models
  • Batch Size 256 / Epochs 120 / Initial Learning Rate 0.0001
  • Training Augmentation: Resize((256, 256)), RandomHorizontalFlip()
  • Adam + Cosine Learning rate scheduling with warmup
  • I tried NVIDIA Pascal GPU - GTX 1080 Ti 1 GPU (w/o Tensor Core) and NVIDIA Turing GPU - RTX 2080 Ti 1 GPU (with Tensor Core)
python main.py --checkpoint_name baseline;

2. Automatic Mixed Precision Training

In PyTorch 1.6, Automatic Mixed Precision Training is very easy to use! Thanks to PyTorch!

2.1 Before

for batch_idx, (inputs, labels) in enumerate(data_loader):
  self.optimizer.zero_grad()

  outputs = self.model(inputs)
  loss = self.criterion(outputs, labels)

  loss.backward()
  self.optimizer.step()

2.2 After (just add 5 lines)

""" define loss scaler for automatic mixed precision """
scaler = torch.cuda.amp.GradScaler()

for batch_idx, (inputs, labels) in enumerate(data_loader):
  self.optimizer.zero_grad()

  with torch.cuda.amp.autocast():
    outputs = self.model(inputs)
    loss = self.criterion(outputs, labels)

  # Scales the loss, and calls backward() 
  # to create scaled gradients 
  self.scaler.scale(loss).backward()

  # Unscales gradients and calls 
  # or skips optimizer.step() 
  self.scaler.step(self.optimizer)

  # Updates the scale for next iteration 
  self.scaler.update()

2.3 Run Script (Command Line)

python main.py --checkpoint_name baseline_amp --amp;

3. Performance Table

  • B : Baseline (FP32)
  • AMP : Automatic Mixed Precision Training (AMP)
Algorithm Test Accuracy GPU Memory Total Training Time
B - 1080 Ti 94.13 10737MB 64.9m
B - 2080 Ti 94.17 10855MB 54.3m
AMP - 1080 Ti 94.07 6615MB 64.7m
AMP - 2080 Ti 94.23 7799MB 37.3m

4. Code Reference