forked from datacarpentry/R-genomics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path05-data-visualization.html
570 lines (499 loc) · 29.8 KB
/
05-data-visualization.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8" />
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="author" content="Data Carpentry contributors" />
<title>Data Visualization</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/bootstrap.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/jqueryui-1.11.4/jquery-ui.min.js"></script>
<link href="site_libs/tocify-1.9.1/jquery.tocify.css" rel="stylesheet" />
<script src="site_libs/tocify-1.9.1/jquery.tocify.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<link href="site_libs/font-awesome-5.0.13/css/fa-svg-with-js.css" rel="stylesheet" />
<script src="site_libs/font-awesome-5.0.13/js/fontawesome-all.min.js"></script>
<script src="site_libs/font-awesome-5.0.13/js/fa-v4-shims.min.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
a.sourceLine { display: inline-block; line-height: 1.25; }
a.sourceLine { pointer-events: none; color: inherit; text-decoration: inherit; }
a.sourceLine:empty { height: 1.2em; position: absolute; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
a.sourceLine { text-indent: -1em; padding-left: 1em; }
}
pre.numberSource a.sourceLine
{ position: relative; }
pre.numberSource a.sourceLine:empty
{ position: absolute; }
pre.numberSource a.sourceLine::before
{ content: attr(data-line-number);
position: absolute; left: -5em; text-align: right; vertical-align: baseline;
border: none; pointer-events: all;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
a.sourceLine::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 51px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 56px;
margin-top: -56px;
}
.section h2 {
padding-top: 56px;
margin-top: -56px;
}
.section h3 {
padding-top: 56px;
margin-top: -56px;
}
.section h4 {
padding-top: 56px;
margin-top: -56px;
}
.section h5 {
padding-top: 56px;
margin-top: -56px;
}
.section h6 {
padding-top: 56px;
margin-top: -56px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<div class="container-fluid main-container">
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
// move toc-ignore selectors from section div to header
$('div.section.toc-ignore')
.removeClass('toc-ignore')
.children('h1,h2,h3,h4,h5').addClass('toc-ignore');
// establish options
var options = {
selectors: "h1,h2,h3",
theme: "bootstrap3",
context: '.toc-content',
hashGenerator: function (text) {
return text.replace(/[.\\/?&!#<>]/g, '').replace(/\s/g, '_').toLowerCase();
},
ignoreSelector: ".toc-ignore",
scrollTo: 0
};
options.showAndHide = false;
options.smoothScroll = true;
// tocify
var toc = $("#TOC").tocify(options).data("toc-tocify");
});
</script>
<style type="text/css">
#TOC {
margin: 25px 0px 20px 0px;
}
@media (max-width: 768px) {
#TOC {
position: relative;
width: 100%;
}
}
.toc-content {
padding-left: 30px;
padding-right: 40px;
}
div.main-container {
max-width: 1200px;
}
div.tocify {
width: 20%;
max-width: 260px;
max-height: 85%;
}
@media (min-width: 768px) and (max-width: 991px) {
div.tocify {
width: 25%;
}
}
@media (max-width: 767px) {
div.tocify {
width: 100%;
max-width: none;
}
}
.tocify ul, .tocify li {
line-height: 20px;
}
.tocify-subheader .tocify-item {
font-size: 0.90em;
padding-left: 25px;
text-indent: 0;
}
.tocify .list-group-item {
border-radius: 0px;
}
.tocify-subheader {
display: inline;
}
.tocify-subheader .tocify-item {
font-size: 0.95em;
}
</style>
<!-- setup 3col/9col grid for toc_float and main content -->
<div class="row-fluid">
<div class="col-xs-12 col-sm-4 col-md-3">
<div id="TOC" class="tocify">
</div>
</div>
<div class="toc-content col-xs-12 col-sm-8 col-md-9">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html"></a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="index.html">Home</a>
</li>
<li>
<a href="00-before-we-start.html">Before we start</a>
</li>
<li>
<a href="01-intro-to-R.html">Intro to R</a>
</li>
<li>
<a href="02-starting-with-data.html">Starting with data</a>
</li>
<li>
<a href="03-data-frames.html">Data frames</a>
</li>
<li>
<a href="04-dplyr.html">The dplyr package</a>
</li>
<li>
<a href="05-data-visualization.html">Data visualization</a>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
<li>
<a href="https://github.com/data-lessons/R-genomics">
<span class="fa fa-github fa-lg"></span>
</a>
</li>
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Data Visualization</h1>
<h4 class="author"><em>Data Carpentry contributors</em></h4>
</div>
<blockquote>
<h2 id="learning-objectives">Learning Objectives</h2>
<ul>
<li>Create simple scatterplots, histograms, and boxplots in R.</li>
<li>Compare the plotting features of base R and the ggplot2 package.</li>
<li>Customize the aesthetics of an existing plot.</li>
<li>Create plots from data in a data frame.</li>
<li>Export plots from RStudio to standard graphical file formats.</li>
</ul>
</blockquote>
<div id="basic-plots-in-r" class="section level1">
<h1>Basic plots in R</h1>
<p>The mathematician Richard Hamming once said, “The purpose of computing is insight, not numbers”, and the best way to develop insight is often to visualize data. Visualization deserves an entire lecture (or course) of its own, but we can explore a few features of R’s plotting packages.</p>
<p>When we are working with large sets of numbers it can be useful to display that information graphically. R has a number of built-in tools for basic graph types such as hisotgrams, scatter plots, bar charts, boxplots and much <a href="http://www.statmethods.net/graphs/">more</a>. We’ll test a few of these out here on the <code>genome_size</code> vector from our metadata.</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb1-1" data-line-number="1">genome_size <-<span class="st"> </span>metadata<span class="op">$</span>genome_size</a></code></pre></div>
<div id="scatterplot" class="section level2">
<h2>Scatterplot</h2>
<p>Let’s start with a <strong>scatterplot</strong>. A scatter plot provides a graphical view of the relationship between two sets of numbers. We don’t have a variable in our metadata that is a continous variable, so there is nothing to plot it against but we can plot the values against their index values just to demonstrate the function.</p>
<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb2-1" data-line-number="1"><span class="kw">plot</span>(genome_size)</a></code></pre></div>
<p><img src="img/r-lesson-scatter-plot1-1.png" width="672" style="display: block; margin: auto;" /></p>
<p>Each point represents a clone and the value on the x-axis is the clone index in the file, where the values on the y-axis correspond to the genome size for the clone. For any plot you can customize many features of your graphs (fonts, colors, axes, titles) through <a href="http://www.statmethods.net/advgraphs/parameters.html">graphic options</a> For example, we can change the shape of the data point using <code>pch</code>.</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb3-1" data-line-number="1"><span class="kw">plot</span>(genome_size, <span class="dt">pch=</span><span class="dv">8</span>)</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-3-1.png" width="672" style="display: block; margin: auto;" /></p>
<p>We can add a title to the plot by assigning a string to <code>main</code>:</p>
<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb4-1" data-line-number="1"><span class="kw">plot</span>(genome_size, <span class="dt">pch=</span><span class="dv">8</span>, <span class="dt">main=</span><span class="st">"Scatter plot of genome sizes"</span>)</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-4-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="histogram" class="section level2">
<h2>Histogram</h2>
<p>Another way to visualize the distribution of genome sizes is to use a histogram, we can do this buy using the <code>hist</code> function:</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb5-1" data-line-number="1"><span class="kw">hist</span>(genome_size)</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-5-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="boxplot" class="section level2">
<h2>Boxplot</h2>
<p>Using additional information from our metadata, we can use plots to compare values between the different citrate mutant status using a <strong>boxplot</strong>. A boxplot provides a graphical view of the median, quartiles, maximum, and minimum of a data set.</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb6-1" data-line-number="1"><span class="co"># Boxplot</span></a>
<a class="sourceLine" id="cb6-2" data-line-number="2"><span class="kw">boxplot</span>(genome_size <span class="op">~</span><span class="st"> </span>cit, metadata)</a></code></pre></div>
<p><img src="img/r-lesson-boxplot-1.png" width="672" style="display: block; margin: auto;" /></p>
<p>Similar to the scatterplots above, we can pass in arguments to add in extras like plot title, axis labels and colors.</p>
<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb7-1" data-line-number="1"><span class="kw">boxplot</span>(genome_size <span class="op">~</span><span class="st"> </span>cit, metadata, <span class="dt">col=</span><span class="kw">c</span>(<span class="st">"pink"</span>,<span class="st">"purple"</span>, <span class="st">"darkgrey"</span>),</a>
<a class="sourceLine" id="cb7-2" data-line-number="2"> <span class="dt">main=</span><span class="st">"Average expression differences between celltypes"</span>, <span class="dt">ylab=</span><span class="st">"Expression"</span>)</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-6-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="advanced-figures-ggplot2" class="section level1">
<h1>Advanced figures (<code>ggplot2</code>)</h1>
<p>More recently, R users have moved away from base graphic options and towards a plotting package called <a href="http://docs.ggplot2.org/"><code>ggplot2</code></a> that adds a lot of functionality to the basic plots seen above. The syntax takes some getting used to but it’s extremely powerful and flexible. We can start by re-creating some of the above plots but using ggplot functions to get a feel for the syntax.</p>
<p><code>ggplot2</code> is best used on data in the <code>data.frame</code> form, so we will will work with <code>metadata</code> for the following figures. Let’s start by loading the <code>ggplot2</code> library.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb8-1" data-line-number="1"><span class="kw">library</span>(ggplot2)</a></code></pre></div>
<p>The <code>ggplot()</code> function is used to initialize the basic graph structure, then we add to it. The basic idea is that you specify different parts of the plot, and add them together using the <code>+</code> operator.</p>
<p>We will start with a blank plot and will add layers as we go along.</p>
<div class="sourceCode" id="cb9"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb9-1" data-line-number="1"><span class="kw">ggplot</span>(metadata)</a></code></pre></div>
<p>Geometric objects are the actual marks we put on a plot. Examples include:</p>
<ul>
<li>points (<code>geom_point</code>, for scatter plots, dot plots, etc)</li>
<li>lines (<code>geom_line</code>, for time series, trend lines, etc)</li>
<li>boxplot (<code>geom_boxplot</code>, for, well, boxplots!)</li>
</ul>
<p>A plot <strong>must have at least one geom</strong>; there is no upper limit. You can add a geom to a plot using the + operator</p>
<div class="sourceCode" id="cb10"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb10-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb10-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_point</span>() <span class="co"># note what happens here</span></a></code></pre></div>
<p>Each type of geom usually has a <strong>required set of aesthetics</strong> to be set, and usually accepts only a subset of all aesthetics –refer to the geom help pages to see what mappings each geom accepts. Aesthetic mappings are set with the aes() function. Examples include:</p>
<ul>
<li>position (i.e., on the x and y axes)</li>
<li>color (“outside” color)</li>
<li>fill (“inside” color) shape (of points)</li>
<li>linetype</li>
<li>size</li>
</ul>
<p>To start, we will add position for the x- and y-axis since <code>geom_point</code> requires mappings for x and y, all others are optional.</p>
<div class="sourceCode" id="cb11"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb11-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb11-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_point</span>(<span class="kw">aes</span>(<span class="dt">x =</span> sample, <span class="dt">y=</span> genome_size))</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-10-1.png" width="672" style="display: block; margin: auto;" /></p>
<p>The labels on the x-axis are quite hard to read. To do this we need to add an additional theme layer. The ggplot2 <code>theme</code> system handles non-data plot elements such as:</p>
<ul>
<li>Axis labels</li>
<li>Plot background</li>
<li>Facet label backround</li>
<li>Legend appearance</li>
</ul>
<p>There are built-in themes we can use, or we can adjust specific elements. For our figure we will change the x-axis labels to be plotted on a 45 degree angle with a small horizontal shift to avoid overlap. We will also add some additional aesthetics by mapping them to other variables in our dataframe. <em>For example, the color of the points will reflect the number of generations and the shape will reflect citrate mutant status.</em> The size of the points can be adjusted within the <code>geom_point</code> but does not need to be included in <code>aes()</code> since the value is not mapping to a variable.</p>
<div class="sourceCode" id="cb12"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb12-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb12-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_point</span>(<span class="kw">aes</span>(<span class="dt">x =</span> sample, <span class="dt">y=</span> genome_size, <span class="dt">color =</span> generation, <span class="dt">shape =</span> cit), <span class="dt">size =</span> <span class="kw">rel</span>(<span class="fl">3.0</span>)) <span class="op">+</span></a>
<a class="sourceLine" id="cb12-3" data-line-number="3"><span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(<span class="dt">angle=</span><span class="dv">45</span>, <span class="dt">hjust=</span><span class="dv">1</span>))</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-11-1.png" width="672" style="display: block; margin: auto;" /></p>
<div id="histogram-1" class="section level2">
<h2>Histogram</h2>
<p>To plot a histogram we require another geometric object <code>geom_bar</code>, which requires a statistical transformation. Some plot types (such as scatterplots) do not require transformations, each point is plotted at x and y coordinates equal to the original value. Other plots, such as boxplots, histograms, prediction lines etc. need to be transformed, and usually has a default statistic that can be changed via the <code>stat_bin</code> argument.</p>
<div class="sourceCode" id="cb13"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb13-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb13-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_bar</span>(<span class="kw">aes</span>(<span class="dt">x =</span> genome_size))</a></code></pre></div>
<p>Try plotting with the default value and compare it to the plot using the binwidth values. How do they differ?</p>
<div class="sourceCode" id="cb14"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb14-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb14-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_bar</span>(<span class="kw">aes</span>(<span class="dt">x =</span> genome_size), <span class="dt">stat =</span> <span class="st">"bin"</span>, <span class="dt">binwidth=</span><span class="fl">0.05</span>)</a></code></pre></div>
<pre><code>## Warning: `geom_bar()` no longer has a `binwidth` parameter. Please use
## `geom_histogram()` instead.</code></pre>
<p><img src="img/r-lesson-unnamed-chunk-13-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
<div id="boxplot-1" class="section level2">
<h2>Boxplot</h2>
<p>Now that we have all the required information on let’s try plotting a boxplot similar to what we had done using the base plot functions at the start of this lesson. We can add some additional layers to include a plot title and change the axis labels. Explore the code below and all the different layers that we have added to understand what each layer contributes to the final graphic.</p>
<div class="sourceCode" id="cb16"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb16-1" data-line-number="1"><span class="kw">ggplot</span>(metadata) <span class="op">+</span></a>
<a class="sourceLine" id="cb16-2" data-line-number="2"><span class="st"> </span><span class="kw">geom_boxplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> cit, <span class="dt">y =</span> genome_size, <span class="dt">fill =</span> cit)) <span class="op">+</span></a>
<a class="sourceLine" id="cb16-3" data-line-number="3"><span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">'Boxplot of genome size by citrate mutant type'</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb16-4" data-line-number="4"><span class="st"> </span><span class="kw">xlab</span>(<span class="st">'citrate mutant'</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb16-5" data-line-number="5"><span class="st"> </span><span class="kw">ylab</span>(<span class="st">'genome size'</span>) <span class="op">+</span></a>
<a class="sourceLine" id="cb16-6" data-line-number="6"><span class="st"> </span><span class="kw">theme</span>(<span class="dt">panel.grid.major =</span> <span class="kw">element_line</span>(<span class="dt">size =</span> <span class="fl">.5</span>, <span class="dt">color =</span> <span class="st">"grey"</span>),</a>
<a class="sourceLine" id="cb16-7" data-line-number="7"> <span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(<span class="dt">angle=</span><span class="dv">45</span>, <span class="dt">hjust=</span><span class="dv">1</span>),</a>
<a class="sourceLine" id="cb16-8" data-line-number="8"> <span class="dt">axis.title =</span> <span class="kw">element_text</span>(<span class="dt">size =</span> <span class="kw">rel</span>(<span class="fl">1.5</span>)),</a>
<a class="sourceLine" id="cb16-9" data-line-number="9"> <span class="dt">axis.text =</span> <span class="kw">element_text</span>(<span class="dt">size =</span> <span class="kw">rel</span>(<span class="fl">1.25</span>)))</a></code></pre></div>
<p><img src="img/r-lesson-unnamed-chunk-14-1.png" width="672" style="display: block; margin: auto;" /></p>
</div>
</div>
<div id="writing-figures-to-file" class="section level1">
<h1>Writing figures to file</h1>
<p>There are two ways in which figures and plots can be output to a file (rather than simply displaying on screen). The first (and easiest) is to export directly from the RStudio ‘Plots’ panel, by clicking on <code>Export</code> when the image is plotted. This will give you the option of <code>png</code> or <code>pdf</code> and selecting the directory to which you wish to save it to.</p>
<p>The second option is to use R functions in the console, allowing you the flexibility to specify parameters to dictate the size and resolution of the output image. Some of the more popular formats include <code>pdf()</code>, <code>png()</code>, which are functions that initialize a plot that will be written directly to a file in the <code>pdf</code> or <code>png</code> format, respectively. Within the function you will need to specify a name for your image in quotes and the width and height. Specifying the width and height is optional, but can be very useful if you are using the figure in a paper or presentation and need it to have a particular resolution. Note that the default units for image dimensions are either pixels (for png) or inches (for pdf). To save a plot to a file you need to:</p>
<ol style="list-style-type: decimal">
<li>Initialize the plot using the function that corresponds to the type of file you want to make: <code>pdf("filename")</code></li>
<li>Write the code that makes the plot.</li>
<li>Close the connection to the new file (with your plot) using <code>dev.off()</code>.</li>
</ol>
<div class="sourceCode" id="cb17"><pre class="sourceCode r"><code class="sourceCode r"><a class="sourceLine" id="cb17-1" data-line-number="1"><span class="kw">pdf</span>(<span class="st">"figure/boxplot.pdf"</span>)</a>
<a class="sourceLine" id="cb17-2" data-line-number="2"></a>
<a class="sourceLine" id="cb17-3" data-line-number="3"><span class="kw">ggplot</span>(example_data) <span class="op">+</span></a>
<a class="sourceLine" id="cb17-4" data-line-number="4"><span class="st"> </span><span class="kw">geom_boxplot</span>(<span class="kw">aes</span>(<span class="dt">x =</span> cit, <span class="dt">y =</span>....) <span class="op">+</span></a>
<a class="sourceLine" id="cb17-5" data-line-number="5"><span class="st"> </span><span class="kw">ggtitle</span>(...) <span class="op">+</span></a>
<a class="sourceLine" id="cb17-6" data-line-number="6"><span class="st"> </span><span class="kw">xlab</span>(...) <span class="op">+</span></a>
<a class="sourceLine" id="cb17-7" data-line-number="7"><span class="st"> </span><span class="kw">ylab</span>(...) <span class="op">+</span></a>
<a class="sourceLine" id="cb17-8" data-line-number="8"><span class="st"> </span><span class="kw">theme</span>(<span class="dt">panel.grid.major =</span> <span class="kw">element_line</span>(...),</a>
<a class="sourceLine" id="cb17-9" data-line-number="9"> <span class="dt">axis.text.x =</span> <span class="kw">element_text</span>(...),</a>
<a class="sourceLine" id="cb17-10" data-line-number="10"> <span class="dt">axis.title =</span> <span class="kw">element_text</span>(...),</a>
<a class="sourceLine" id="cb17-11" data-line-number="11"> <span class="dt">axis.text =</span> <span class="kw">element_text</span>(...)</a>
<a class="sourceLine" id="cb17-12" data-line-number="12"></a>
<a class="sourceLine" id="cb17-13" data-line-number="13"><span class="kw">dev.off</span>()</a></code></pre></div>
<div id="resources" class="section level2">
<h2>Resources:</h2>
<p>We have only scratched the surface here. To learn more, see the <a href="http://docs.ggplot2.org/">ggplot2 reference site</a>, and Winston Chang’s excellent <a href="http://wiki.stdout.org/rcookbook/Graphs/">Cookbook for R</a> site. Though slightly out of date, <a href="http://www.amazon.com/ggplot2-Elegant-Graphics-Data-Analysis/dp/0387981403">ggplot2: Elegant Graphics for Data Anaysis</a> is still the definative book on this subject. Much of the material here was adpapted from <a href="http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html">Introduction to R graphics with ggplot2 Tutorial at IQSS</a>.</p>
</div>
</div>
<hr/>
<p><a href="http://datacarpentry.org/">Data Carpentry</a>,
2017-2018. <a href="LICENSE.html">License</a>. <a href="CONTRIBUTING.html">Contributing</a>. <br/>
Questions? Feedback?
Please <a href="https://github.com/datacarpentry/R-genomics/issues/new">file
an issue on GitHub</a>. <br/> On
Twitter: <a href="https://twitter.com/datacarpentry">@datacarpentry</a></p>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.header').parent('thead').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>