-
Notifications
You must be signed in to change notification settings - Fork 3
/
city2.py
322 lines (272 loc) · 13.3 KB
/
city2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import face_recognition
import warnings
warnings.filterwarnings("ignore")
import cv2
import numpy as np
from datetime import datetime
import warnings
import os
import sqlite3
import boto3
import requests
import io
from keras.models import load_model
from datetime import date
from PIL import Image
import cv2
from class_CNN import NeuralNetwork
from class_PlateDetection import PlateDetector
hog = cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
warnings.filterwarnings("ignore")
plateDetector = PlateDetector(type_of_plate='RECT_PLATE',
minPlateArea=4500,
maxPlateArea=30000)
access_key_id = 'USE YOUR ID'
secret_access_key = 'USE YOUR KEY'
client = boto3.client('rekognition', region_name='ap-south-1', aws_access_key_id=access_key_id,
aws_secret_access_key=secret_access_key)
# Initialize the Neural Network
myNetwork = NeuralNetwork(modelFile="model/binary_128_0.50_ver3.pb",
labelFile="model/binary_128_0.50_labels_ver2.txt")
conn = sqlite3.connect("sih.db")
model = load_model('./model/model.h5')
cordinates = {"latitude": '28.6504', "longitude": "77.2372", 'region': 'Pitam Pura', 'city': 'Delhi'}
def sus_loc(name, img):
if name != 'Unknown':
path = f"./database/suspect/{cordinates['city']}.{name}.{date.today()}"
cur = conn.cursor()
cur = cur.execute('Select * from sus_loc where name=?', [name])
fetch = cur.fetchall()
if fetch:
curr = conn.cursor()
curr = conn.execute("Select * from sus_loc where latitude=? and longitude=? and name=?",
[cordinates['latitude'], cordinates['longitude'], name])
fetche = curr.fetchall()
if not fetche:
conn.execute("Insert into sus_loc values (?,?,?,?,?,?)",
[name, cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'],
date.today()])
conn.commit()
if os.path.exists(path):
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", img)
else:
os.mkdir(path)
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", img)
else:
conn.execute("Insert into sus_loc values (?,?,?,?,?,?)",
[name, cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'], date.today()])
conn.commit()
if os.path.exists(path):
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", img)
else:
os.mkdir(path)
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", img)
def make_face_encodings(suspects):
known_face_encodings = []
known_face_names = []
for i in suspects:
image = face_recognition.load_image_file(f'./suspects/{i}')
image_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(image_encoding)
known_face_names.append(i)
return known_face_encodings, known_face_names
def find_car(plates, img):
possible_plates = plateDetector.find_possible_plates(img)
if possible_plates is not None:
for i, p in enumerate(possible_plates):
chars_on_plate = plateDetector.char_on_plate[i]
recognized_plate, _ = myNetwork.label_image_list(chars_on_plate, imageSizeOuput=128)
if recognized_plate in plates:
print(recognized_plate)
cordinates = {"latitude": '28.6504', "longitude": "77.2372", 'region': 'Pitam Pura', 'city': 'Delhi'}
path = f"./database/Plates/{cordinates['city']}.{recognized_plate}.{date.today()}"
cur = conn.cursor()
cur = cur.execute('Select * from car_loc where num=?', [recognized_plate])
fetch = cur.fetchall()
if fetch:
curr = conn.cursor()
curr = conn.execute("Select * from car_loc where latitude=? and longitude=? and num=?",
[cordinates['latitude'], cordinates['longitude'], recognized_plate])
fetche = curr.fetchall()
if not fetche:
conn.execute("Insert into car_loc values (?,?,?,?,?,?)",
[cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'], date.today(), recognized_plate])
conn.commit()
if os.path.exists(path):
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", p)
else:
os.mkdir(path)
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", p)
else:
conn.execute("Insert into car_loc values (?,?,?,?,?,?)",
[cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'], date.today(), recognized_plate])
conn.commit()
if os.path.exists(path):
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", p)
else:
os.mkdir(path)
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.png", p)
def detect_violence(frame, i):
frame1=frame.copy()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
frame = np.dstack([frame, frame, frame])
pil_img = Image.fromarray(frame) # convert opencv frame (with type()==numpy) into PIL Image
stream = io.BytesIO()
pil_img.save(stream, format='JPEG') # convert PIL Image to Bytes
bin_img = stream.getvalue()
# print(type(i))
if (i % 40 == 0):
text = "No disturbing content"
if (i % 5 == 0):
response = client.detect_moderation_labels(
Image={
'Bytes': bin_img
},
MinConfidence=70,
)
responses = response['ModerationLabels']
res = ['Violence', 'Physical Violence', 'Weapon Violence', 'Suggestive']
for item in responses:
# cv2.imwrite('videos/images/frame' + str(i) + ' ' + item['Name'] + '.jpg', frame)
# print(item['Name'])
text = item['Name']
print(text)
if text in res:
now = datetime.now()
current_time = now.strftime("%H:%M")
path = f"./database/violence/{cordinates['city']}.{date.today()}"
cur = conn.cursor()
now = datetime.now()
current_time = now.strftime("%H:%M")
cur = cur.execute('Select * from locations where date=? and time=?', [date.today(), current_time])
fetch = cur.fetchall()
if fetch:
# print("idahra aya")
now = datetime.now()
current_time = now.strftime("%H:%M")
curr = conn.cursor()
curr = conn.execute(
"Select * from locations where latitude=? and longitude=? and date=? and time=?",
[cordinates['latitude'], cordinates['longitude'], date.today(), current_time])
fetche = curr.fetchall()
if not fetche:
# print("andar")
now = datetime.now()
current_time = now.strftime("%H:%M")
conn.execute("Insert into locations values (?,?,?,?,?,?)",
[cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'], date.today(), current_time])
conn.commit()
# print("agau")
if os.path.exists(path):
# print("bina aye")
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.{current_time}.png", frame1)
else:
# print("banake")
os.mkdir(path)
cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.{current_time}.png", frame1)
else:
print("iske")
now = datetime.now()
path = f"./database/violence/{cordinates['city']}.{date.today()}"
current_time = now.strftime("%H:%M")
conn.execute("Insert into locations values (?,?,?,?,?,?)",
[cordinates['latitude'], cordinates['longitude'], cordinates['region'],
cordinates['city'], date.today(), current_time])
conn.commit()
if os.path.exists(path):
print('mial')
# cv2.imwrite(f"{path}/{str(date.today())}.{cordinates['latitude']}.{current_time}.png", frame1)
# cv2.imshow('frame1',frame1)
# cv2.waitKey(0)
# cv2.imwrite(path+'/'+str(date.today())+'.'+cordinates['latitude']+'.'+current_time+'.png', frame1)
cv2.imwrite(f"{path}/{cordinates['latitude']}.{i}.png", frame1)
else:
print('bana')
os.mkdir(path)
# cv2.imwrite(f"{path}/{date.today()}.{cordinates['latitude']}.{current_time}.png"+'.png', frame1)
cv2.imwrite(f"{path}/{cordinates['latitude']}.{i}.png", frame1)
# video_capture = cv2.VideoCapture(r'E:\SIH\test_videos\test.MOV')
video_capture = cv2.VideoCapture(0)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
newlength = 0
known_face_encodings = []
known_face_names = []
new_plate_len = 0
jkl = 0
while True:
suspects = list(os.walk(r'./suspects'))[0][2]
num = len(suspects)
# print(num, newlength)
if num != newlength:
newlength = num
# if newlength != 0:
known_face_encodings, known_face_names = make_face_encodings(suspects)
ret, frame = video_capture.read()
if ret == True:
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
if list(os.walk('./suspects'))[0][2] != []:
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255))
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
sus_loc(name, frame[top:top + bottom, left:left + right])
# Display the resulting image
cur = conn.cursor()
num_list = []
cur = cur.execute("Select * from plates")
l = cur.fetchall()
for i in l:
num_list.append(i[0])
count_plates = len(num_list)
if count_plates > 0:
find_car(num_list, frame)
# detect_violence(model, frame)
detect_violence(frame, jkl)
jkl += 1
cv2.imshow('Video', frame)
#
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()