diff --git a/CHANGELOG.md b/CHANGELOG.md index 9613e291..c4b8bb23 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -4,7 +4,7 @@ All notable changes to this project will be documented in this file. The format is based on [Keep a Changelog](http://keepachangelog.com/) and this project adheres to [Semantic Versioning](http://semver.org/). -## [Unreleased] +## [0.1.0] -2022-04-14 ### Added diff --git a/README(JP).md b/README(JP).md deleted file mode 100644 index e42de507..00000000 --- a/README(JP).md +++ /dev/null @@ -1,12 +0,0 @@ -# Tunny - -**Tunny** はオープンソースのハイパーパラメータ自動最適化フレームワーク Optuna を使った Grasshopper の最適化コンポーネントです。 -以下は公式サイトより引用 - -> オープンソースのハイパーパラメータ自動最適化フレームワーク Optuna™ は、ハイパーパラメータの値に関する試行錯誤を自動化し、優れた性能を発揮するハイパーパラメータの値を自動的に発見します。オープンソースの深層学習フレームワーク Chainer をはじめ、様々な機械学習ソフトウェアと一緒に使用することが可能です。 -> -> Optuna は、物体検出コンペティション [Google AI Open Images 2018 – Object Detection Track](https://www.preferred.jp/ja/news/pr20180907/) など、PFN の各プロジェクトで活用され、成果をあげています。 - - -Optuna の公式サイト -- https://optuna.org/ diff --git a/README.md b/README.md index 6082ff94..733c18c8 100644 --- a/README.md +++ b/README.md @@ -72,7 +72,7 @@ Input of large size meshes is deprecated because it makes the analysis heavier. ![image](https://user-images.githubusercontent.com/23289252/163379419-40368cc4-8abd-40d0-94ca-d0a468796c57.png) -### Optimize Window +### Optimization Window Double-click on the component icon to open the form for performing optimization. @@ -89,9 +89,10 @@ Values that can be set and their meanings are as follows. - Sampler - Sets the algorithm to perform the optimization. The following types are available. - 1. TPE (Tree-structured Parzen Estimator) - 1. NSGA-II - 1. CMA-ES + - All are optimization algorithms provided by Optuna. + 1. TPE (Bayesian optimization) + 1. NSGA-II (Genetic algorithm) + 1. CMA-ES (Evolution strategy) 1. Random - Number of trial - This number of trials will be performed. @@ -122,6 +123,7 @@ Values that can be set and their meanings are as follows. - Open the folder where the file containing the optimization results is located. The results are stored under the name "Tunny_Opt_Result.db". - Clear result file - Deletes the optimization result file. + - If the value of the input changes, delete it if necessary, since optimization using a file containing the same name study will cause content conflicts and optimization will not be performed. - Set restore model number - The model with the number entered here is restored from the optimization results file and is the output of the component. - The model number matches the tree structure of the output. @@ -147,7 +149,7 @@ Or [pixivFANBOX](https://hiron.fanbox.cc/) ## License Tunny is licensed under the [MIT](https://github.com/hrntsm/Tunny/blob/main/LICENSE) license. -Copyright© 2019-2021, hrntsm +Copyright© 2022, hrntsm Release package is embedded Python runtime & optuna libraries. These depend on their own licenses.