-
Notifications
You must be signed in to change notification settings - Fork 0
/
STClient.py
845 lines (785 loc) · 34.1 KB
/
STClient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 10 18:25:34 2020
@author: hem
"""
import socket
import sys
import random as rd
import math
import time
from threading import Thread
import bisect as _bisect
import argparse
# from statsmodels.tsa.ar_model import AR
import warnings
def print_message(message):
print(message)
class STClient:
def __init__(self, args):
self.max_write_threads = 10
self.max_read_threads = 10
self.max_transfer_threads = 10
self.max_write_queue = 100
self.max_buffer_size = 128*1024
self.max_read_queue = 100
self.debug = False
self.total_transfer_done = 0
self.transfer_done = False
self.stop_time = 0
self.transfer_port = 0
self.start_time = 0
if(not args.sender or not args.receiver):
print("[+] Sender and receiver not specified")
exit(0)
sender_info = self.parse_IP(args.sender)
receiver_info = self.parse_IP(args.receiver)
self.sender_ip = sender_info[0]
self.sender_port = int(sender_info[1])
self.sender_path = sender_info[2]
print_message("[Sender] is %s:%d%s"%(self.sender_ip, self.sender_port, self.sender_path))
self.receiver_ip = receiver_info[0]
self.receiver_port = int(receiver_info[1])
self.receiver_path = receiver_info[2]
self.interface_ip = self.receiver_ip
print_message("[Receiver] is %s:%d%s"%(self.receiver_ip, self.receiver_port, self.receiver_path))
if(args.interface):
self.interface_ip = args.interface
def parse_IP(self, ip):
parsed_ip = []
messages = ip.split(":")
parsed_ip.append(messages[0])
if "~" in messages[1]:
new_msg = messages[1].split("~")
parsed_ip.append(new_msg[0])
parsed_ip.append("~"+new_msg[1])
else:
new_msg = messages[1].split("/", 1)
parsed_ip.append(new_msg[0])
parsed_ip.append("/"+new_msg[1])
return parsed_ip
class TalkSend(Thread):
def __init__(self, st_client_param):
Thread.__init__(self)
self.st_client = st_client_param
self.stop_probing = False
self.sender_finish_blocks = False
self.start_current_probing = False
self.stop_current_probing = False
self.can_start_probing = False
self.current_probe_started = False
self.parameters = ""
self.parameter_list = {}
self.serversocket = None
self.client_data, self.client_addr = None, None
def send_message(self, message):
message = str(message)+"\n"
self.socket.send(message.encode())
def get_next_line(self):
message = self.socket.recv(1024).decode()
while("\n" not in message):
message += self.socket.recv(1024).decode()
message=message.strip()
return message
def probe(self):
self.send_message("Parameter:"+self.parameters)
message = self.get_next_line()
if(message == "ok"):
self.sender_finish_blocks = True
while(not self.start_current_probing):
time.sleep(0.010)
self.send_message("Start:currentProbing")
message = self.get_next_line()
if(message.lower() == "ok"):
self.current_probe_started = True
while(not self.stop_current_probing):
time.sleep(0.010)
self.send_message("Check:done")
message = self.get_next_line()
msg = message.strip().split(":")
if(msg[0].lower() == "true"):
self.st_client.stop_time = int(time.time()*1000)
self.st_client.transfer_done = True
if(len(msg) >= 2):
self.st_client.total_transfer_done = int(msg[1].strip())
self.stop_current_probing = True
self.stop_probing = True
return True
self.send_message("Stop:currentProbing")
message = self.get_next_line()
self.stop_current_probing = False
self.current_probe_started = False
self.sender_finish_blocks = False
return True
def run(self):
self.socket = socket.socket()
# self.server_socket.bind((self.st_client.sender_ip, self.st_client.sender_port))
self.client_data = self.socket.connect((self.st_client.sender_ip, self.st_client.sender_port))
self.send_message(str(self.st_client.interface_ip))
while(self.st_client.transfer_port == 0):
time.sleep(10)
#Sender data
self.send_message(str(self.st_client.transfer_port))
self.send_message(str(self.st_client.sender_path))
#Max Parameters
self.send_message(str(self.st_client.max_transfer_threads))
self.send_message(str(self.st_client.max_read_threads))
self.send_message(str(self.st_client.max_read_queue))
self.send_message("Start:Probing")
self.get_next_line()
self.can_start_probing = True
self.st_client.start_time = int(time.time()*1000)
print_message("Starting time is: %d"%self.st_client.start_time)
while(not self.stop_probing):
while(self.parameters == ""):
time.sleep(0.010)
self.probe()
if not self.st_client.transfer_done:
self.send_message("Start:Transfer")
print_message("[Sender] Normal transfer has been started")
self.get_next_line()
self.probe()
self.socket.close()
def set_parameter(self, param):
self.parameters = param
class TalkReceive(Thread):
def __init__(self, st_client_param, st_send_param):
Thread.__init__(self)
self.stop_probing = False
self.start_current_probing = False
self.stop_current_probing = False
self.convergence_found = False
self.can_start_probing = False
self.parameters = ""
self.parameter_list = {}
self.thpt_list = []
self.talk_send = st_send_param
self.st_client = st_client_param
self.serversocket = None
self.client_data, self.client_addr = None, None
self.zero_count = 0
self.should_end = False
def send_message(self, message):
message = str(message)+"\n"
try:
self.socket.send(message.encode())
except:
self.should_end = True
def get_next_line(self):
try:
message = self.socket.recv(1024).decode()
while("\n" not in message):
message += self.socket.recv(1024).decode()
message=message.strip()
except:
message = "the:transfer:is:completed"
self.should_end = True
return message
def add_throughput(self, message, throughput_started):
if(message != ""):
thpts = message.split(",")
for i in thpts:
if(i != ""):
throughput = 0.
try:
throughput = float(i)
except:
pass
if(throughput <= 0.000001 and not len(self.thpt_list) and not throughput_started):
self.zero_count += 1
if self.zero_count > 15:
break
continue
throughput_started = True
self.thpt_list.append(throughput)
return throughput_started
def probe(self):
self.zero_count = 0
self.send_message("Parameter:"+self.parameters)
message = self.get_next_line()
if(self.should_end == True):
return
if(message.lower() == "ok"):
self.talk_send.start_current_probing = True
while(not self.talk_send.sender_finish_blocks or not self.start_current_probing):
time.sleep(0.01)
self.start_current_probing = self.talk_send.current_probe_started
self.send_message("Start:currentProbing")
message = self.get_next_line()
self.thpt_list = []
throughput_started = False
while(not self.stop_current_probing):
self.send_message("Get Throughput:New")
if(self.should_end == True):
return
message = self.get_next_line()
throughput_started = self.add_throughput(message, throughput_started)
time.sleep(0.01)
tmp = self.thpt_list
self.thpt_list = [0]*self.zero_count + tmp
self.talk_send.stop_current_probing = True
self.send_message("Stop:currentProbing")
message = self.get_next_line()
self.stop_current_probing = False
self.start_current_probing = False
self.talk_send.start_current_probing = False
def run(self):
self.socket = socket.socket()
self.client_data = self.socket.connect((self.st_client.receiver_ip, self.st_client.receiver_port))
print_message("Receiver: %s and port: %s" % (self.st_client.receiver_ip, str(self.st_client.receiver_port)))
self.send_message(self.st_client.receiver_path)
self.send_message(self.st_client.max_transfer_threads)
self.send_message(self.st_client.max_write_threads)
self.send_message(self.st_client.max_write_queue)
self.send_message(self.st_client.max_buffer_size)
self.st_client.transfer_port = int(self.get_next_line())
self.send_message("Start:Probing")
self.get_next_line()
self.st_client.start_time = int(time.time()*1000)
self.can_start_probing = True
while(not self.stop_probing):
while(self.parameters == ""):
time.sleep(0.01)
self.probe()
if(not self.st_client.transfer_done):
self.send_message("Start:Transfer")
print_message("[Receiver] Normal transfer has been started")
self.get_next_line()
self.probe()
self.socket.close()
def set_parameter(self, param):
self.parameters = param
class GA:
def __init__(self, args):
self.number_of_generations = 4
self.number_of_population = 6
if(args.generation):
self.number_of_generations = args.generation
if(args.population):
self.number_of_population = args.population
self.evaluation = "adaptive"
self.crossover_type = "favour_zero"
self.mutation_type = "bit_flip"
self.selection_type = "standard_deviation_elitist"
if(args.manual):
self.params = [[args.num, 128], [37, 256], [12, 260], [1, 132], [1, 256], [1, 128]]
self.param_length = [0,0,0,0,0,0]
else:
self.params = [[1, 128], [1, 256], [10, 260], [50, 132], [1, 128], [1, 128]]
self.param_length = [0,0,0,0,4,5]
self.population_length = 0
self.agents = []
self.talk_send = None
self.talk_receive = None
self.st_client = None
self.best_score = 0
self.best_pop = ""
self.previous_best_pop = ""
self.initiate(args)
if(not args.manual):
for i in self.param_length:
self.population_length += i
for i in range(self.number_of_population):
self.agents.append(Agents(population="", population_length=self.population_length))
# if(self.conv == "dnn"):
# self.load_clfs()
# print("[+] CLF's loaded")
# if(self.conv == "rand"):
# adaptive_iterative.regression_train()
# adaptive_iterative.classification_train()
# print("[+] CLF's loaded")
print("[+] Conv is ", self.conv)
self.mutation_probab = 1.0#/self.population_length
self.crossover_probab = 1.0
print("[+] Method is ", args.method)
if(args.method.lower() == "random"):
self.run_random()
else:
self.run_GA()
print_message("Best Population: %s and best score: %d" % (self.best_pop, self.best_score))
self.talk_send.parameters = self.best_pop
self.talk_receive.parameters = self.best_pop
else:
self.talk_send.parameters = ','.join(str(e[0]) for e in self.params) #self.best_pop
self.talk_receive.parameters = ','.join(str(e[0]) for e in self.params) #self.best_pop
self.manual_evaluate()
self.talk_send.stop_probing = True
self.talk_receive.stop_probing = True
self.talk_receive.stop_current_probing = True
while(not self.st_client.transfer_done):
time.sleep(0.01)
self.check_transfer_done()
def check_transfer_done(self):
message = False
if(self.st_client.transfer_done):
print_message("Sending message to receiver")
self.talk_receive.send_message("Done:transfer")
print_message("Message send to receiver")
try:
msg = self.talk_receive.get_next_line()
print(msg)
msg = msg.split(":")
print(msg)
if("ok" in msg):
self.talk_send.stop_probing = True
self.talk_receive.stop_probing = True
self.st_client.transfer_done = True
print_message("[+] Total time for this transfer is %.3f Seconds"%((self.st_client.stop_time - self.st_client.start_time)/1000.))
message = True
if(len(msg) == 2):
print_message(str(self.st_client.total_transfer_done) + " Bytes")
print_message("[+] Total file transfered is %.3f Bytes" % (int(self.st_client.total_transfer_done)/(1024.*1024.*1024.)))
print_message("[+] Average throughput is %.3f Mbps" % ((1000 * 8 * int(self.st_client.total_transfer_done))/((self.st_client.stop_time - self.st_client.start_time)*1000.*1000.)))
print_message("These are the params: " + ','.join(str(e[0]) for e in self.params))
time.sleep(0.02)
self.talk_send._stop.set()
time.sleep(0.05)
self.talk_receive._stop.set()
exit(0)
except:
self.talk_send.stop_probing = True
self.talk_receive.stop_probing = True
self.st_client.transfer_done = True
print_message("[+ err] Total time for this transfer is %.3f Seconds"%((self.st_client.stop_time - self.st_client.start_time)/1000.))
print_message("[+ err] Average throughput is %.3f Mbps" % ((1000 * 8 * int(self.st_client.total_transfer_done))/((self.st_client.stop_time - self.st_client.start_time)*1000.*1000.)))
message = True
sys.exit(0)
return message
def initiate(self, args):
self.st_client = STClient(args)
self.st_client.max_read_threads = self.params[0][0]+2**self.param_length[0]+1
self.st_client.max_transfer_threads = self.params[4][0]+2**self.param_length[4]+1
self.st_client.max_write_threads = self.params[5][0]+2**self.param_length[5]+1
self.st_client.start_time = int(time.time()*1000)
self.talk_send = TalkSend(self.st_client)
self.talk_receive = TalkReceive(self.st_client, self.talk_send)
self.talk_send.start()
self.talk_receive.start()
self.conv = args.conv
# self.talk_send.join()
# self.talk_receive.join()
def run_GA(self):
ags = self.agents
for i in range(self.number_of_generations):
self.evaluate_population(ags)
# self.evaluate_population(ags)
if self.st_client.transfer_done:
exit(0)
# if i >= (self.number_of_generations/2):
# self.best_score = 0.
ags = self.selection(ags+self.agents, i)
if (i+1) != self.number_of_generations:
ags = self.crossover(ags)
ags = self.mutation(ags)
if i>1:
self.agents = ags
print_message("[+] Current complete generation is: %d"%(i+1))
self.choose_best_pop()
def run_random(self):
self.agents = []
for i in range(self.number_of_generations*self.number_of_population):
self.agents.append(Agents(population="", population_length=self.population_length))
self.evaluate_population(self.agents)
# self.evaluate_population(self.agents)
self.selection(self.agents, 0)
def selection(self, agents, generation):
ags = []
tmp = []
#Comment this out in final version.
is_chameleon = False
if(generation == 0 and is_chameleon):
tmp = agents[:3]
agents = agents[5:]
agents = sorted(agents, reverse=True)
if self.best_score<agents[0].get_score():
self.previous_best_pop = self.best_pop
self.best_pop = self.get_param_string(agents[0].get_population())
self.best_score = agents[0].get_score()
agents = agents + tmp
agents = sorted(agents, reverse=True)
if self.selection_type == "elitist":
agents = agents[:self.number_of_population-5]
if self.best_pop:
agents.append(Agents(self.get_bin_string(self.best_pop)))
agents.append(Agents(self.get_bin_string(self.best_pop)))
print("%s or %s" % (self.best_pop, self.get_bin_string(self.best_pop)))
# if self.previous_best_pop:
# agents.append(Agents(self.get_bin_string(self.previous_best_pop)))
# agents.append(Agents(self.get_bin_string(self.best_pop)))
for i in range(self.number_of_population):
ags.append(rd.choice(agents))
elif self.selection_type == "ranked":
for i in range(self.number_of_population):
ags = self.get_random_choices(agents, weights=self.get_ranking(len(agents)), k=self.number_of_population)
elif self.selection_type == "percentage_elitist":
return self.percentage_elitist(agents)
elif self.selection_type == "standard_deviation_elitist":
return self.standard_deviation_elitist(agents)
return ags
def percentage_elitist(self, agents, higher_than=0.25):
ags = []
new_ags = []
avg_thpt = self.get_average_generation_thpt(agents)
print_message("[Genaration] average throughput of generation is %.3f Mbps and larger than %.3f Mbps" % (avg_thpt, avg_thpt*(1+higher_than)))
for agent in agents:
if agent.get_score() > (1+higher_than) * avg_thpt:
ags.append(agent)
if len(ags)<2:
ags = self.percentage_elitist(agents, higher_than=higher_than-0.05)
for i in range(len(ags), self.number_of_population):
new_ags.append(rd.choice(ags))
return ags+new_ags
def standard_deviation_elitist(self, agents, number_of_std=1):
ags = []
new_ags = []
avg_thpt = self.get_average_generation_thpt(agents)
std_ = self.get_generation_std(agents)
print_message("[Genaration] average throughput of generation is %.3f Mbps and larger than %.3f Mbps" % (avg_thpt, avg_thpt+(number_of_std*std_)))
for agent in agents:
if agent.get_score() >= (avg_thpt+(std_*number_of_std)):
ags.append(agent)
if len(ags)<2:
ags = self.standard_deviation_elitist(agents, number_of_std-0.5)
for i in range(len(ags), self.number_of_population):
new_ags.append(rd.choice(ags))
return ags+new_ags
def get_ranking(self, length):
ranks = [i for i in range(length, 0, -1)]
sum_r = sum(ranks)
return [(1.0*i)/sum_r for i in ranks]
def crossover(self, agents):
ags = []
for i in range(self.number_of_population//2):
p1 = agents[2*i].get_population()
p2 = agents[2*i+1].get_population()
c1, c2 = p1, p2
if rd.random() <= self.crossover_probab:
if self.crossover_type == "single_point":
c1, c2 = self.single_point_crossover(p1, p2)
elif self.crossover_type == "favor_zero":
c1, c2 = self.favor_zero(p1, p2)
ags.append(Agents(c1))
ags.append(Agents(c2))
return ags
def favor_zero(self, p1, p2):
p1 = self.get_bin_array(p1)
p2 = self.get_bin_array(p2)
c1 = ""
c2 = ""
for i in range(len(p1)):
curr_1 = p1[i]
curr_2 = p2[i]
for j in range(len(curr_1)):
char_1 = int(curr_1[j])
char_2 = int(curr_2[j])
if char_1 == char_2:
c1 += str(char_1)
c2 += str(char_2)
else:
if char_1 == 0:
c1 += str(char_1)
c2 += '0' if rd.random() < 0.5+((len(curr_2)-j)/50) else '1'
else:
c1 += '0' if rd.random() < 0.5+((len(curr_2)-j)/50) else '1'
c2 += str(char_2)
return c1, c2
def get_bin_array(self, p1):
string_array = []
since_last = 0
for i in range(len(self.param_length)):
till = since_last + self.param_length[i]
current = p1[since_last:till]
string_array.append(current)
since_last = till
return string_array
def single_point_crossover(self, p1, p2):
index = rd.randint(0, len(p1)-1)
c1 = p1[:index] + p2[index:]
c2 = p2[:index] + p1[index:]
return c1, c2
def mutation(self, agents):
ags = []
for agent in agents:
if rd.random() <= self.mutation_probab:
if self.mutation_type == "bit_flip":
agent = Agents(self.bit_flip_mutation(agent.get_population()))
ags.append(agent)
return ags
def bit_flip_mutation(self, population):
index = rd.randint(0, len(population)-1)
tmp = "0" if population[index]=="1" else "1"
return population[:index] + tmp + population[index+1:]
def get_param_string(self, population):
value_string = ""
since_last = 0
for i in range(len(self.param_length)):
till = since_last + self.param_length[i]
current = population[since_last:till]
if i:
value_string += ","
since_last = till
value_string += str(self.get_value(current, i))
return value_string
def get_bin_string(self, param_str):
val_str = param_str.split(",")
pop = ""
for i in range(len(val_str)):
value = str(bin(int(val_str[i]) - self.params[i][0]))[2:]
pop += self.get_bin_value(value, self.param_length[i])
return pop
def get_bin_value(self, value, length):
if length == 0:
return ""
zeros = "0" * (length-len(value))
return zeros + value
def get_value(self, current, i):
if not current:
return self.params[i][0]
return int(current, 2)+self.params[i][0]
def evaluate_population(self, agents):
for agent in agents:
print_message("[Agent] for agent "+self.get_param_string(agent.get_population()))
evaluation_start = time.time()
agent.set_thpt(self.evaluate(agent))
if(self.check_transfer_done()):
print_message("Transfer is done in %.3f Seconds"%((self.st_client.stop_time - self.st_client.start_time)/1000.))
break
print_message("[Agent] for agent %s throughput is: %.3f Mbps avgThpt: %.3f in total time %.3f"%(self.get_param_string(agent.get_population()), agent.get_thpt(), agent.get_avg_thpt(), time.time() - evaluation_start))
def evaluate(self, agent):
self.convergence_thpt = {}
parameter = self.get_param_string(agent.get_population())
throughput = 0.
self.talk_receive.set_parameter(parameter)
self.talk_send.set_parameter(parameter)
while(not self.talk_send.can_start_probing or not self.talk_receive.can_start_probing):
time.sleep(0.01)
self.talk_send.start_current_probing = True
while(throughput == 0.0 and len(self.talk_receive.thpt_list)<1500 and not self.st_client.transfer_done):
time.sleep(0.01)
thpt_list = self.talk_receive.thpt_list
if len(thpt_list) not in self.convergence_thpt:
throughput = self.find_convergence(thpt_list)
self.convergence_thpt[len(thpt_list)] = throughput
else:
throughput = self.convergence_thpt[len(thpt_list)]
# print("[Throughput] list" + str(self.talk_receive.thpt_list))
if throughput == 0.:
throughput = self.find_average_thpt(self.talk_receive.thpt_list)
agent.set_avg_thpt(self.find_average_thpt(self.talk_receive.thpt_list))
self.talk_receive.thpt_list = []
self.talk_receive.stop_current_probing = True
return throughput
def manual_evaluate(self):
self.convergence_thpt = {}
# parameter = self.get_param_string(agent.get_population())
parameter = self
throughput = 0.
self.talk_send.parameters = ','.join(str(e[0]) for e in self.params) #self.best_pop
self.talk_receive.parameters = ','.join(str(e[0]) for e in self.params) #self.best_pop
while(not self.talk_send.can_start_probing or not self.talk_receive.can_start_probing):
time.sleep(0.01)
self.talk_send.start_current_probing = True
while(throughput == 0.0 and len(self.talk_receive.thpt_list)<1500 and not self.st_client.transfer_done):
time.sleep(0.01)
thpt_list = self.talk_receive.thpt_list
if len(thpt_list) not in self.convergence_thpt:
throughput = self.find_convergence(thpt_list)
self.convergence_thpt[len(thpt_list)] = throughput
else:
throughput = self.convergence_thpt[len(thpt_list)]
# print("[Throughput] list" + str(self.talk_receive.thpt_list))
if throughput == 0.:
throughput = self.find_average_thpt(self.talk_receive.thpt_list)
# agent.set_avg_thpt(self.find_average_thpt(self.talk_receive.thpt_list))
self.talk_receive.thpt_list = []
self.talk_receive.stop_current_probing = True
return throughput
def find_convergence(self, thpt_list):
# if(self.conv == "ar"):
# return self.find_convergence_timeseries(thpt_list)
# elif(self.conv == "dnn"):
# return self.find_convergence_dnn(thpt_list)
# elif self.conv == "rand":
# if len(thpt_list) >= 2 and adaptive_iterative.is_predictable(thpt_list):
# print(thpt_list)
# return adaptive_iterative.make_prediction(thpt_list)
# else:
# return 0.0
return self.find_average_thpt(thpt_list) if len(thpt_list)>=10 else 0.0
# def find_convergence_timeseries(self, thpt_list):
# if(len(thpt_list)<4):
# return 0.
# if(len(thpt_list)>15):
# return self.find_average_thpt(thpt_list)
# tmp = [0]+thpt_list[:-1]
# model = AR(tmp)
# start_params = [0, 0, 1]
# model_fit = model.fit(maxlag=1, start_params=start_params, disp=-1)
# predicted_last = model_fit.predict(len(tmp), len(tmp))[0]
# last_pt = thpt_list[-1]
# if( (last_pt != 0.) and (predicted_last - last_pt)/last_pt < 0.1):
# return predicted_last
# return 0.
# def load_clfs(self):
# self.all_clfs = {}
# for i in range(3, 16):
# self.all_clfs[i] = joblib.load("./clfs/pronghorn-10-%d-42-percentage-optimal.pkl"%i)
def get_percentage_change_thpts(self, thpt_list):
if len(thpt_list) <= 1:
return []
new_thpt = []
prev_thpt = thpt_list[0]
for index in range(1, len(thpt_list)):
perc = thpt_list[index] - prev_thpt
new_thpt.append(perc / (prev_thpt+1.5))
prev_thpt = thpt_list[index]
return new_thpt
# def find_convergence_dnn(self, thpt_list):
# threshold = 1.0
# # print("Actual Thpt list", thpt_list)
# # print(thpt_list)
# prev_thpt_list = thpt_list
# thpt_list = self.get_percentage_change_thpts(thpt_list)
# # print("Percentage Change thpt", thpt_list)
# # print(thpt_list)
# if len(thpt_list)<3:
# return 0
# elif len(thpt_list)>=15:
# return self.find_average_thpt(thpt_list)
# i = len(thpt_list)
# y_pred = self.all_clfs[i].predict_proba([thpt_list])[0]
# max_, ind_ = self.get_max_and_index(y_pred)
# print("[+] ", max_, threshold - 0.05*(len(thpt_list) - 2), ind_, i, len(prev_thpt_list))
# # print("CT", ind_, " Prediction probability", max_, " Threshold", threshold - 0.05*(len(thpt_list) - 2))
# if(max_ > (threshold - 0.05*(len(thpt_list) - 2)) and ind_+2 <= i+1):
# return self.find_average_thpt(prev_thpt_list)
# return 0.0
def get_max_and_index(self, lis):
max_ = lis[0]
ind_ = 0
for i in range(len(lis)):
if max_ <= lis[i]:
max_ = lis[i]
ind_ = i
return max_, ind_
def find_average_thpt(self, thpt_list):
if not thpt_list:
return 0.
return (1.0*sum(thpt_list))/len(thpt_list)
def choose_best_pop(self):
pass
def get_random_choices(self, population, weights=None, cum_weights=None, k=1):
random = rd.random
if cum_weights is None:
if weights is None:
_int = int
total = len(population)
return [population[_int(random() * total)] for i in range(k)]
cum_weights = []
last_val = 0
for i in weights:
last_val += i
cum_weights.append(last_val)
elif weights is not None:
raise TypeError('Cannot specify both weights and cumulative weights')
if len(cum_weights) != len(population):
raise ValueError('The number of weights does not match the population')
bisect = _bisect.bisect
total = cum_weights[-1]
hi = len(cum_weights) - 1
return [population[bisect(cum_weights, random() * total, 0, hi)]
for i in range(k)]
def get_average_generation_thpt(self, agents):
total_score = 0
for agent in agents:
total_score += agent.get_score()
return total_score/len(agents)
# def get_generation_std(self, agents):
# scores = []
# for i in agents:
# scores.append(i.get_score())
# return np.array(scores).std()
def get_generation_std(self, agents):
n = len(agents)
if n <= 1:
return 0.0
mean, sd = self.get_average_generation_thpt(agents), 0.0
# calculate stan. dev.
for el in agents:
sd += (float(el.get_score()) - mean)**2
sd = math.sqrt(sd / float(n-1))
return sd
class Agents:
def __init__(self, population="", population_length=0):
self.population = population
self.throughput = -1
self.average_throughput = 0
self.memory_error = False
if population == "":
self.population = self.get_random_string(population_length)
def get_random_string(self, population_length):
to_ret = ""
for i in range(population_length):
to_ret += rd.choice(["0", "1"])
return to_ret
def set_avg_thpt(self, thpt):
if self.average_throughput:
self.average_throughput += thpt
self.average_throughput = self.average_throughput/2.
else:
self.average_throughput = thpt
def get_avg_thpt(self):
return self.average_throughput
def set_thpt(self, thpt):
if self.throughput != -1:
self.throughput += thpt
self.throughput /= 2.
else:
self.throughput = thpt
def get_thpt(self):
return self.throughput
def get_population(self):
return self.population
def get_score(self):
if self.get_thpt()>0.0:
return self.get_thpt()
return self.get_avg_thpt() + self.get_thpt()
def __lt__ (self, other):
return self.get_score() < other.get_score()
def __gt__(self, other):
return self.get_score() > other.get_score()
def __eq__(self, other):
return self.get_score() == other.get_score()
if __name__=="__main__":
parser = argparse.ArgumentParser(description='Parameters in the application')
parser.add_argument('sender', type=str,
help='Sender information')
parser.add_argument('receiver', type=str,
help='Receiver information')
parser.add_argument('--interface', type=str,
help='Interface to send information in the receiver')
parser.add_argument('--generation', type=int,
help='Number of generation for GA')
parser.add_argument('--population', type=int,
help='Number of population for GA')
parser.add_argument('--method', type=str,
help='Method of algorithm to use')
parser.add_argument('--conv', type=str,
help='Method of algorithm to use')
parser.add_argument('--manual', type=bool, default=False,
help='whether or not to use manual transfers')
parser.add_argument('--num', type=int,
help='value of static parameter')
args = parser.parse_args()
print("Argument values:")
print(args.sender)
print(args.receiver)
if(not args.method):
args.method = "GA"
if(not args.conv):
args.method = "avg"
try:
ga = GA(args)
except KeyboardInterrupt:
exit(0)