diff --git a/week2/preprocessed_mnist.py b/week2/preprocessed_mnist.py
index e04ea50..b838084 100644
--- a/week2/preprocessed_mnist.py
+++ b/week2/preprocessed_mnist.py
@@ -1,4 +1,4 @@
-import keras
+from tensorflow import keras
def load_dataset(flatten=False):
diff --git a/week2/v2/digits_classification.ipynb b/week2/v2/digits_classification.ipynb
index 9da64c7..cf7bb95 100644
--- a/week2/v2/digits_classification.ipynb
+++ b/week2/v2/digits_classification.ipynb
@@ -1,15 +1,5 @@
{
"cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set tf 1.x for colab\n",
- "%tensorflow_version 1.x"
- ]
- },
{
"cell_type": "markdown",
"metadata": {
@@ -38,7 +28,7 @@
"from sklearn.metrics import accuracy_score\n",
"from matplotlib import pyplot as plt\n",
"%matplotlib inline\n",
- "import tensorflow as tf\n",
+ "import tensorflow.compat.v1 as tf\n",
"print(\"We're using TF\", tf.__version__)\n",
"\n",
"import sys\n",
@@ -176,7 +166,7 @@
"metadata": {},
"outputs": [],
"source": [
- "import keras\n",
+ "from tensorflow import keras\n",
"\n",
"y_train_oh = keras.utils.to_categorical(y_train, 10)\n",
"y_val_oh = keras.utils.to_categorical(y_val, 10)\n",
@@ -192,6 +182,7 @@
"outputs": [],
"source": [
"# run this again if you remake your graph\n",
+ "tf.disable_eager_execution()\n",
"s = reset_tf_session()"
]
},
@@ -398,4 +389,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
-}
+}
\ No newline at end of file
diff --git a/week2/v2/grading_utils.py b/week2/v2/grading_utils.py
index a96058a..3780aa0 100644
--- a/week2/v2/grading_utils.py
+++ b/week2/v2/grading_utils.py
@@ -2,12 +2,8 @@
# -*- coding: utf-8 -*-
-def get_tensor_shape(t):
- return [d.value for d in t.shape]
-
-
def get_tensors_shapes_string(tensors):
res = []
for t in tensors:
- res.extend([str(v) for v in get_tensor_shape(t)])
+ res.extend([str(v) for v in t.shape])
return " ".join(res)
diff --git a/week2/v2/ill-conditioned-demo.ipynb b/week2/v2/ill-conditioned-demo.ipynb
index 0b20560..b473366 100644
--- a/week2/v2/ill-conditioned-demo.ipynb
+++ b/week2/v2/ill-conditioned-demo.ipynb
@@ -1,47 +1,25 @@
{
"cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set tf 1.x for colab\n",
- "%tensorflow_version 1.x"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Read about ill-conditioning: http://cnl.salk.edu/~schraudo/teach/NNcourse/precond.html"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "Using TensorFlow backend.\n"
- ]
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "We're using TF 1.3.0\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
- "import tensorflow as tf\n",
+ "import tensorflow.compat.v1 as tf\n",
"import sys\n",
"sys.path.append(\"../..\")\n",
"from keras_utils import reset_tf_session\n",
+ "tf.disable_eager_execution()\n",
"s = reset_tf_session()\n",
"print(\"We're using TF\", tf.__version__)\n",
"from matplotlib import animation, rc\n",
@@ -53,7 +31,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -103,38 +81,18 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"plot_gd(x_scale=1.0, lr=0.1, steps=25)"
]
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
+ "execution_count": null,
"metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# narrow valleys\n",
"plot_gd(x_scale=0.5, lr=0.1, steps=25)"
@@ -142,19 +100,9 @@
},
{
"cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
+ "execution_count": null,
"metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# narrower valleys\n",
"plot_gd(x_scale=0.2, lr=0.1, steps=25)"
@@ -162,19 +110,9 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
"
- ]
- },
+ "execution_count": null,
"metadata": {},
- "output_type": "display_data"
- }
- ],
+ "outputs": [],
"source": [
"# bigger learning rate then?\n",
"# x is changed faster, but y changes are too big, leads to oscillation\n",
@@ -203,4 +141,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
-}
+}
\ No newline at end of file
diff --git a/week2/v2/intro_to_tensorflow.ipynb b/week2/v2/intro_to_tensorflow.ipynb
index 540379f..c2ef7ad 100644
--- a/week2/v2/intro_to_tensorflow.ipynb
+++ b/week2/v2/intro_to_tensorflow.ipynb
@@ -1,15 +1,5 @@
{
"cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set tf 1.x for colab\n",
- "%tensorflow_version 1.x"
- ]
- },
{
"cell_type": "markdown",
"metadata": {
@@ -48,10 +38,11 @@
"metadata": {},
"outputs": [],
"source": [
- "import tensorflow as tf\n",
+ "import tensorflow.compat.v1 as tf\n",
"import sys\n",
"sys.path.append(\"../..\")\n",
"from keras_utils import reset_tf_session\n",
+ "tf.disable_eager_execution()\n",
"s = reset_tf_session()\n",
"print(\"We're using TF\", tf.__version__)"
]
@@ -581,4 +572,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
-}
+}
\ No newline at end of file
diff --git a/week2/v2/mnist_with_keras.ipynb b/week2/v2/mnist_with_keras.ipynb
index 3262c8a..facb95b 100644
--- a/week2/v2/mnist_with_keras.ipynb
+++ b/week2/v2/mnist_with_keras.ipynb
@@ -1,15 +1,5 @@
{
"cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set tf 1.x for colab\n",
- "%tensorflow_version 1.x"
- ]
- },
{
"cell_type": "markdown",
"metadata": {
@@ -46,13 +36,12 @@
"%matplotlib inline\n",
"import tensorflow as tf\n",
"print(\"We're using TF\", tf.__version__)\n",
- "import keras\n",
+ "from tensorflow import keras\n",
"print(\"We are using Keras\", keras.__version__)\n",
"\n",
"import sys\n",
"sys.path.append(\"../..\")\n",
- "import keras_utils\n",
- "from keras_utils import reset_tf_session"
+ "import keras_utils"
]
},
{
@@ -127,11 +116,11 @@
"outputs": [],
"source": [
"# building a model with keras\n",
- "from keras.layers import Dense, Activation\n",
- "from keras.models import Sequential\n",
+ "from tensorflow.keras.layers import Dense, Activation\n",
+ "from tensorflow.keras.models import Sequential\n",
"\n",
"# we still need to clear a graph though\n",
- "s = reset_tf_session()\n",
+ "K.clear_session()\n",
"\n",
"model = Sequential() # it is a feed-forward network without loops like in RNN\n",
"model.add(Dense(256, input_shape=(784,))) # the first layer must specify the input shape (replacing placeholders)\n",
@@ -259,4 +248,4 @@
},
"nbformat": 4,
"nbformat_minor": 1
-}
+}
\ No newline at end of file
diff --git a/week2/v2/preprocessed_mnist.py b/week2/v2/preprocessed_mnist.py
index e04ea50..b838084 100644
--- a/week2/v2/preprocessed_mnist.py
+++ b/week2/v2/preprocessed_mnist.py
@@ -1,4 +1,4 @@
-import keras
+from tensorflow import keras
def load_dataset(flatten=False):
diff --git a/week2/v2/tensorflow_examples_from_video.ipynb b/week2/v2/tensorflow_examples_from_video.ipynb
index a2129d8..00c9098 100644
--- a/week2/v2/tensorflow_examples_from_video.ipynb
+++ b/week2/v2/tensorflow_examples_from_video.ipynb
@@ -1,15 +1,5 @@
{
"cells": [
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": [
- "# set tf 1.x for colab\n",
- "%tensorflow_version 1.x"
- ]
- },
{
"cell_type": "markdown",
"metadata": {},
@@ -19,7 +9,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -28,26 +18,19 @@
},
{
"cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "1.3.0\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
- "import tensorflow as tf\n",
+ "import tensorflow.compat.v1 as tf\n",
+ "tf.disable_eager_execution()\n",
"import numpy as np\n",
"print(tf.__version__)"
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -59,24 +42,16 @@
},
{
"cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "Tensor(\"matmul:0\", shape=(2, 2), dtype=float32)\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"print(c)"
]
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -85,21 +60,9 @@
},
{
"cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([[ 2., 2.],\n",
- " [ 2., 2.]], dtype=float32)"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"s.run(tf.global_variables_initializer())\n",
"s.run(c, feed_dict={a: np.ones((2, 2))})"
@@ -107,7 +70,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -119,18 +82,22 @@
"metadata": {},
"source": [
"# Video \"Our first model in TensorFlow\""
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Simple optimization (with simple prints)"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -141,7 +108,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -151,46 +118,18 @@
},
{
"cell_type": "code",
- "execution_count": 10,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[]"
- ]
- },
- "execution_count": 10,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"tf.trainable_variables()"
]
},
{
"cell_type": "code",
- "execution_count": 11,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "-0.865988 1.17177\n",
- "-0.69279 0.749935\n",
- "-0.554232 0.479959\n",
- "-0.443386 0.307174\n",
- "-0.354709 0.196591\n",
- "-0.283767 0.125818\n",
- "-0.227014 0.0805237\n",
- "-0.181611 0.0515352\n",
- "-0.145289 0.0329825\n",
- "-0.116231 0.0211088\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"with tf.Session() as s: # in this way session will be closed automatically\n",
" s.run(tf.global_variables_initializer())\n",
@@ -204,11 +143,13 @@
"metadata": {},
"source": [
"### Simple optimization (with tf.Print)"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -220,7 +161,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -230,7 +171,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -242,7 +183,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -264,11 +205,13 @@
"metadata": {},
"source": [
"### Simple optimization (with TensorBoard logging)"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -279,7 +222,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -289,7 +232,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -300,7 +243,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -318,7 +261,9 @@
"metadata": {},
"source": [
"Run `tensorboard --logdir=./logs` in bash"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "markdown",
@@ -326,14 +271,18 @@
"source": [
"This is what you can see in your browser **(not available in Coursera Notebooks)**\n",
"
"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**If you're running on Google Colab you can still run TensorBoard!**"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
@@ -355,7 +304,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -367,22 +316,15 @@
"metadata": {},
"source": [
"### Training a linear model"
- ]
+ ],
+ "execution_count": null,
+ "outputs": []
},
{
"cell_type": "code",
- "execution_count": 21,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(1000, 3) (1000, 1)\n",
- "[[ 0.09498027 0.48793618 0.39011257]]\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"# generate model data\n",
"N = 1000\n",
@@ -397,17 +339,9 @@
},
{
"cell_type": "code",
- "execution_count": 22,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "(?, 1) (?, 1) ()\n"
- ]
- }
- ],
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
"source": [
"tf.reset_default_graph()\n",
"\n",
@@ -424,7 +358,7 @@
},
{
"cell_type": "code",
- "execution_count": 23,
+ "execution_count": null,
"metadata": {},
"outputs": [],
"source": [
@@ -434,24 +368,11 @@
},
{
"cell_type": "code",
- "execution_count": 24,
+ "execution_count": null,
"metadata": {
"scrolled": true
},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "0.532865\n",
- "0.0458802\n",
- "0.0410158\n",
- "0.040087\n",
- "0.0399092\n",
- "0.0398751\n"
- ]
- }
- ],
+ "outputs": [],
"source": [
"with tf.Session() as s:\n",
" s.run(tf.global_variables_initializer())\n",
@@ -464,20 +385,9 @@
},
{
"cell_type": "code",
- "execution_count": 25,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([[ 0.11388827, 0.4882018 , 0.36716884]], dtype=float32)"
- ]
- },
- "execution_count": 25,
+ "execution_count": null,
"metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# found weights\n",
"curr_weights.T"
@@ -485,20 +395,9 @@
},
{
"cell_type": "code",
- "execution_count": 26,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "array([[ 0.09498027, 0.48793618, 0.39011257]])"
- ]
- },
- "execution_count": 26,
+ "execution_count": null,
"metadata": {},
- "output_type": "execute_result"
- }
- ],
+ "outputs": [],
"source": [
"# true weights\n",
"w.T"
@@ -526,4 +425,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
-}
+}
\ No newline at end of file