diff --git a/week3/week3_task1_first_cnn_cifar10_clean.ipynb b/week3/week3_task1_first_cnn_cifar10_clean.ipynb index be94d0d..7612f7b 100644 --- a/week3/week3_task1_first_cnn_cifar10_clean.ipynb +++ b/week3/week3_task1_first_cnn_cifar10_clean.ipynb @@ -1,15 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# set tf 1.x for colab\n", - "%tensorflow_version 1.x" - ] - }, { "cell_type": "markdown", "metadata": { @@ -90,8 +80,8 @@ "outputs": [], "source": [ "import tensorflow as tf\n", - "import keras\n", - "from keras import backend as K\n", + "from tensorflow import keras\n", + "from tensorflow.keras import backend as K\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", @@ -149,7 +139,7 @@ }, "outputs": [], "source": [ - "from keras.datasets import cifar10\n", + "from tensorflow.keras.datasets import cifar10\n", "(x_train, y_train), (x_test, y_test) = cifar10.load_data()" ] }, @@ -265,9 +255,8 @@ "outputs": [], "source": [ "# import necessary building blocks\n", - "from keras.models import Sequential\n", - "from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Activation, Dropout\n", - "from keras.layers.advanced_activations import LeakyReLU" + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Softmax, LeakyReLU, Dropout" ] }, { @@ -275,18 +264,18 @@ "metadata": {}, "source": [ "Convolutional networks are built from several types of layers:\n", - "- [Conv2D](https://keras.io/layers/convolutional/#conv2d) - performs convolution:\n", + "- [Conv2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D) - performs convolution:\n", " - **filters**: number of output channels; \n", " - **kernel_size**: an integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window;\n", " - **padding**: padding=\"same\" adds zero padding to the input, so that the output has the same width and height, padding='valid' performs convolution only in locations where kernel and the input fully overlap;\n", " - **activation**: \"relu\", \"tanh\", etc.\n", " - **input_shape**: shape of input.\n", - "- [MaxPooling2D](https://keras.io/layers/pooling/#maxpooling2d) - performs 2D max pooling.\n", - "- [Flatten](https://keras.io/layers/core/#flatten) - flattens the input, does not affect the batch size.\n", - "- [Dense](https://keras.io/layers/core/#dense) - fully-connected layer.\n", - "- [Activation](https://keras.io/layers/core/#activation) - applies an activation function.\n", - "- [LeakyReLU](https://keras.io/layers/advanced-activations/#leakyrelu) - applies leaky relu activation.\n", - "- [Dropout](https://keras.io/layers/core/#dropout) - applies dropout." + "- [MaxPool2D](https://www.tensorflow.org/api_docs/python/tf/keras/layers/MaxPool2D) - performs 2D max pooling.\n", + "- [Flatten](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Flatten) - flattens the input, does not affect the batch size.\n", + "- [Dense](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense) - fully-connected layer.\n", + "- [Softmax](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Softmax) - applies softmax activation function.\n", + "- [LeakyReLU](https://www.tensorflow.org/api_docs/python/tf/keras/layers/LeakyReLU) - applies leaky relu activation.\n", + "- [Dropout](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dropout) - applies dropout." ] }, { @@ -309,7 +298,7 @@ "... # here comes a bunch of convolutional, pooling and dropout layers\n", "\n", "model.add(Dense(NUM_CLASSES)) # the last layer with neuron for each class\n", - "model.add(Activation(\"softmax\")) # output probabilities\n", + "model.add(Softmax()) # output probabilities\n", "```\n", "\n", "Stack __4__ convolutional layers with kernel size __(3, 3)__ with growing number of filters __(16, 32, 32, 64)__, use \"same\" padding.\n", @@ -427,7 +416,7 @@ "# prepare model for fitting (loss, optimizer, etc)\n", "model.compile(\n", " loss='categorical_crossentropy', # we train 10-way classification\n", - " optimizer=keras.optimizers.adamax(lr=INIT_LR), # for SGD\n", + " optimizer=keras.optimizers.Adamax(lr=INIT_LR), # for SGD\n", " metrics=['accuracy'] # report accuracy during training\n", ")\n", "\n", @@ -460,7 +449,7 @@ "\n", "#### uncomment below to continue training from model checkpoint\n", "#### fill `last_finished_epoch` with your latest finished epoch\n", - "# from keras.models import load_model\n", + "# from tensorflow.keras.models import load_model\n", "# s = reset_tf_session()\n", "# last_finished_epoch = 7\n", "# model = load_model(model_filename.format(last_finished_epoch))" @@ -653,6 +642,7 @@ "outputs": [], "source": [ "s = reset_tf_session() # clear default graph\n", + "tf.compat.v1.disable_eager_execution()\n", "K.set_learning_phase(0) # disable dropout\n", "model = make_model()\n", "model.load_weights(\"weights.h5\") # that were saved after model.fit" @@ -700,10 +690,10 @@ "\n", " # this is the placeholder for the input image\n", " input_img = model.input\n", - " img_width, img_height = input_img.shape.as_list()[1:3]\n", + " img_width, img_height = input_img.shape[1:3]\n", " \n", " # find the layer output by name\n", - " layer_output = list(filter(lambda x: x.name == layer_name, model.layers))[0].output\n", + " layer_output = model.get_layer(name=layer_name).output\n", "\n", " # we build a loss function that maximizes the activation\n", " # of the filter_index filter of the layer considered\n", @@ -755,7 +745,7 @@ " cols = 8\n", " rows = 2\n", " filter_index = 0\n", - " max_filter_index = list(filter(lambda x: x.name == layer_name, model.layers))[0].output.shape.as_list()[-1] - 1\n", + " max_filter_index = model.get_layer(name=layer_name).output.shape[-1] - 1\n", " fig = plt.figure(figsize=(2 * cols - 1, 3 * rows - 1))\n", " for i in range(cols):\n", " for j in range(rows):\n", @@ -789,7 +779,7 @@ "conv_activation_layers = []\n", "for layer in model.layers:\n", " if isinstance(layer, LeakyReLU):\n", - " prev_layer = layer.inbound_nodes[0].inbound_layers[0]\n", + " prev_layer = layer.inbound_nodes[0].inbound_layers\n", " if isinstance(prev_layer, Conv2D):\n", " conv_activation_layers.append(layer)\n", "\n", @@ -914,4 +904,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file diff --git a/week3/week3_task2_fine_tuning_clean.ipynb b/week3/week3_task2_fine_tuning_clean.ipynb index fef9275..241986c 100644 --- a/week3/week3_task2_fine_tuning_clean.ipynb +++ b/week3/week3_task2_fine_tuning_clean.ipynb @@ -1,15 +1,5 @@ { "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# set tf 1.x for colab\n", - "%tensorflow_version 1.x" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -82,8 +72,8 @@ "outputs": [], "source": [ "import tensorflow as tf\n", - "import keras\n", - "from keras import backend as K\n", + "from tensorflow import keras\n", + "from tensorflow.keras import backend as K\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", @@ -494,7 +484,7 @@ " # stack images into 4D tensor [batch_size, img_size, img_size, 3]\n", " batch_imgs = np.stack(batch_imgs, axis=0)\n", " # convert targets into 2D tensor [batch_size, num_classes]\n", - " batch_targets = keras.utils.np_utils.to_categorical(batch_targets, N_CLASSES)\n", + " batch_targets = keras.utils.to_categorical(batch_targets, N_CLASSES)\n", " yield batch_imgs, batch_targets" ] }, @@ -578,7 +568,7 @@ " new_output = keras.layers.GlobalAveragePooling2D()(model.output)\n", " # add new dense layer for our labels\n", " new_output = keras.layers.Dense(N_CLASSES, activation='softmax')(new_output)\n", - " model = keras.engine.training.Model(model.inputs, new_output)\n", + " model = keras.Model(model.inputs, new_output)\n", " return model" ] }, @@ -647,7 +637,7 @@ "# set all layers trainable by default\n", "for layer in model.layers:\n", " layer.trainable = True\n", - " if isinstance(layer, keras.layers.BatchNormalization):\n", + " if type(layer).__name__ == \"BatchNormalization\":\n", " # we do aggressive exponential smoothing of batch norm\n", " # parameters to faster adjust to our new dataset\n", " layer.momentum = 0.9\n", @@ -655,7 +645,7 @@ "# fix deep layers (fine-tuning only last 50)\n", "for layer in model.layers[:-50]:\n", " # fix all but batch norm layers, because we neeed to update moving averages for a new dataset!\n", - " if not isinstance(layer, keras.layers.BatchNormalization):\n", + " if type(layer).__name__ != \"BatchNormalization\":\n", " layer.trainable = False" ] }, @@ -675,7 +665,7 @@ "# compile new model\n", "model.compile(\n", " loss='categorical_crossentropy', # we train 102-way classification\n", - " optimizer=keras.optimizers.adamax(lr=1e-2), # we can take big lr here because we fixed first layers\n", + " optimizer=keras.optimizers.Adamax(lr=1e-2), # we can take big lr here because we fixed first layers\n", " metrics=['accuracy'] # report accuracy during training\n", ")" ] @@ -692,7 +682,7 @@ "\n", "#### uncomment below to continue training from model checkpoint\n", "#### fill `last_finished_epoch` with your latest finished epoch\n", - "# from keras.models import load_model\n", + "# from tensorflow.keras.models import load_model\n", "# s = reset_tf_session()\n", "# last_finished_epoch = 10\n", "# model = load_model(model_filename.format(last_finished_epoch))" @@ -720,7 +710,7 @@ "source": [ "# fine tune for 2 epochs (full passes through all training data)\n", "# we make 2*8 epochs, where epoch is 1/8 of our training data to see progress more often\n", - "model.fit_generator(\n", + "model.fit(\n", " train_generator(tr_files, tr_labels), \n", " steps_per_epoch=len(tr_files) // BATCH_SIZE // 8,\n", " epochs=2 * 8,\n", @@ -744,9 +734,9 @@ "source": [ "## GRADED PART, DO NOT CHANGE!\n", "# Accuracy on validation set\n", - "test_accuracy = model.evaluate_generator(\n", + "test_accuracy = model.evaluate(\n", " train_generator(te_files, te_labels), \n", - " len(te_files) // BATCH_SIZE // 2\n", + " steps=len(te_files) // BATCH_SIZE // 2\n", ")[1]\n", "grader.set_answer(\"wuwwC\", test_accuracy)\n", "print(test_accuracy)" @@ -823,4 +813,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} +} \ No newline at end of file