-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnn.cpp
executable file
·415 lines (345 loc) · 13.3 KB
/
nn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#include <iostream>
#include <fstream>
#include <assert.h>
#include <cmath>
#include <Eigen/Dense>
#include <random>
#include "nn.h"
using namespace Eigen;
namespace nnet
{
neural_net::neural_net(const VectorXi& topology)
{
assert(topology.size()>1);
init_layers(topology);
init_weights();
autoscale_reset();
}
neural_net::neural_net(const char* filename)
{
std::ifstream file(filename, std::ios::in);
if(file)
{
// number of layers
int num_layers;
file >> num_layers;
VectorXi topology(num_layers);
// topology
for(int i = 0; i < topology.size(); ++i)
file >> topology[i];
init_layers(topology);
autoscale_reset();
// scaling parameters
for(int i = 0; i < x_scale_.size(); ++i) file >> x_scale_[i];
for(int i = 0; i < x_shift_.size(); ++i) file >> x_shift_[i];
for(int i = 0; i < y_scale_.size(); ++i) file >> y_scale_[i];
for(int i = 0; i < y_shift_.size(); ++i) file >> y_shift_[i];
// weights
for (int i = 1; i < layers_.size(); ++i)
{
auto& layer = layers_[i];
for(int j = 0; j < layer.b.size(); ++j) file >> layer.b(j);
for(int j = 0; j < layer.W.size(); ++j) file >> layer.W(j);
}
}
file.close();
}
void neural_net::init_layers(const VectorXi& topology)
{
// init input layer
nparam_ = 0;
nn_layer l;
l.size = topology(0);
layers_.push_back(l);
// init hidden and output layer
for (int i = 1; i < topology.size(); ++i)
{
nn_layer l;
l.size = topology(i);
l.W.setZero(l.size, layers_[i-1].size);
l.b.setZero(l.size);
layers_.push_back(l);
nparam_ += l.W.size() + l.b.size();
}
tparams_ = {0.005, 1.e10, 10.0, 1.e-7, 0, 1000};
}
void neural_net::init_weights()
{
std::random_device rd{};
std::mt19937 gen{rd()};
for (int i = 1; i < layers_.size(); ++i)
{
f_type beta = 0.7*std::pow(layers_[i].size, 1.0/layers_[i-1].size);
f_type range = 2.0;
std::uniform_real_distribution<> d{-1, 1};
layers_[i].W = layers_[i].W.unaryExpr([&](f_type x){ return d(gen); });
layers_[i].W.rowwise().normalize();
layers_[i].W *= range*beta;
if(layers_[i].size == 1)
layers_[i].b.setZero();
else
layers_[i].b = range*beta*layers_[i].b.unaryExpr([&](f_type x){ return d(gen); });
}
}
void neural_net::forward_pass(const matrix_t& X)
{
assert(layers_.front().size == X.cols());
// copy and scale data matrix
layers_[0].a.noalias() = (X.rowwise() - x_shift_.transpose())*x_scale_.asDiagonal();
for (int i = 1; i < layers_.size(); ++i)
{
// compute input for current layer
layers_[i].z.noalias() = layers_[i-1].a * layers_[i].W.transpose();
// add bias
layers_[i].z.rowwise() += layers_[i].b.transpose();
// apply activation function
bool end = (i >= layers_.size() - 1);
layers_[i].a = end ? layers_[i].z : activation(layers_[i].z);
}
}
f_type neural_net::loss(const matrix_t& X, const matrix_t& Y)
{
assert(layers_.front().size == X.cols());
assert(layers_.back().size == Y.cols());
assert(X.rows() == Y.rows());
// number of samples and output dim.
size_t Q = Y.rows();
size_t S = Y.cols();
// Resize jacobian and define error.
je_.resize(nparam_);
j_.resize(S*Q, nparam_);
vector_t error(S*Q);
// MSE.
f_type mse = 0.;
for(size_t k = 0; k < Q; ++k)
{
// forward pass
forward_pass(X.row(k));
// compute error
error.row(k) = layers_.back().a*y_scale_.asDiagonal().inverse() - (Y.row(k) - y_shift_.transpose());
// Compute loss.
mse += error.row(k).rowwise().squaredNorm().mean()/S;
// Number of layers.
size_t m = layers_.size();
// Compute sensitivities.
size_t j = nparam_;
layers_[m-1].delta = y_scale_.asDiagonal().inverse();
// Pack Jacobian.
j -= layers_[m-1].W.size();
for(size_t p = 0; p < S; ++p)
{
layers_[m-1].dEdW.noalias() = (layers_[m-1].delta.col(p)*layers_[m-2].a);
j_.block(S*k+p, j, 1, layers_[m-1].W.size()) = Map<vector_t>(layers_[m-1].dEdW.data(), layers_[m-1].dEdW.size()).transpose();
}
j -= layers_[m-1].b.size();
j_.block(S*k, j, S, layers_[m-1].b.size()) = layers_[m-1].delta;
for(size_t i = layers_.size() - 2; i > 0; --i)
{
layers_[i].delta.noalias() = activation_gradient(layers_[i].a).asDiagonal()*layers_[i+1].W.transpose()*layers_[i+1].delta;
// Pack Jacobian.
j -= layers_[i].W.size();
for(size_t p = 0; p < S; ++p)
{
layers_[i].dEdW.noalias() = (layers_[i].delta.col(p)*layers_[i-1].a);
j_.block(S*k+p, j, 1, layers_[i].W.size()) = Map<vector_t>(layers_[i].dEdW.data(), layers_[i].dEdW.size()).transpose();
}
j -= layers_[i].b.size();
j_.block(S*k, j, S, layers_[i].b.size()) = layers_[i].delta.transpose();
}
}
jj_.noalias() = j_.transpose()*j_;
jj_ /= (Q*S);
j_ /= (Q*S);
je_.noalias() = j_.transpose()*error;
return mse/Q;
}
void neural_net::train(const matrix_t& X, const matrix_t& Y, bool verbose)
{
// Reset mu.
tparams_.mu = 0.0005;
int nex = X.rows();
// Forward and back propogate to compute loss and Jacobian.
f_type mse = loss(X, Y);
vector_t wb = get_wb(), optwb = get_wb();
f_type wse = wb.transpose()*wb;
// Initialize Bayesian regularization parameters.
f_type gamma = nparam_;
f_type beta = 0.5*(nex - gamma)/mse;
beta = beta <= 0 ? 1. : beta;
f_type alpha = 0.5*gamma/wse;
f_type tse = beta*mse + alpha*wse;
f_type grad = 2.*std::sqrt(je_.squaredNorm());
matrix_t eye = matrix_t::Identity(nparam_, nparam_);
// Define iteration tol parameters.
int iter = 0;
f_type tse2 = 0, mse2 = 0, wse2 = 0;
do
{
if(verbose)
std::cout << "iter: " << iter << " mse: " << mse << " gamma: " << gamma << " mu: " << tparams_.mu << " grad: " << grad << std::endl;
matrix_t jjb = jj_;
vector_t jeb = je_;
do
{
// Compute new weights and performance.
optwb = wb - (beta*jjb + (tparams_.mu + alpha)*eye).colPivHouseholderQr().solve(beta*jeb + alpha*wb);
wse2 = optwb.transpose()*optwb;
set_wb(optwb);
mse2 = loss(X, Y);
tse2 = beta*mse2 + alpha*wse2;
// Exit loop or reset values.
if(tse2 < tse || tparams_.mu > tparams_.mu_max)
break;
else
{
set_wb(wb);
//mse2 = loss(X, Y);
tparams_.mu *= tparams_.mu_scale;
}
} while(true);
wb = optwb;
mse = mse2; wse = wse2;
gamma = (f_type)nparam_ - alpha*(beta*jj_ + alpha*eye).inverse().trace();
beta = mse == 0 ? 1. : 0.5*((f_type)nex - gamma)/mse;
alpha = wse == 0 ? 1. : 0.5*gamma/wse;
tse = beta*mse + alpha*wse;
grad = 2.*std::sqrt(je_.squaredNorm());
if(tparams_.mu < tparams_.mu_max)
tparams_.mu /= tparams_.mu_scale;
if(tparams_.mu < 1.e-20) tparams_.mu = 1.e-20;
++iter;
} while(
tparams_.mu < tparams_.mu_max &&
grad > tparams_.min_grad &&
iter <= tparams_.max_iter &&
mse > tparams_.min_loss &&
!std::isnan(grad) &&
!std::isnan(gamma));
if(verbose)
std::cout << "iter: " << iter << " mse: " << mse << " gamma: " << gamma << " mu: " << tparams_.mu << " grad: " << grad << std::endl;
}
train_param neural_net::get_train_params() const
{
return tparams_;
}
void neural_net::set_train_params(const train_param& params)
{
tparams_ = params;
}
matrix_t neural_net::get_activation()
{
return (layers_.back().a*y_scale_.asDiagonal().inverse()).rowwise() + y_shift_.transpose();
}
matrix_t neural_net::get_gradient(int index)
{
layers_.back().delta = matrix_t::Identity(layers_.back().size, layers_.back().size)*y_scale_.asDiagonal().inverse();
for (size_t i = layers_.size() - 2; i > 0; --i)
{
matrix_t g = activation_gradient(layers_[i].a);
layers_[i].delta = (layers_[i+1].delta*layers_[i+1].W)*g.row(index).asDiagonal();
}
return layers_[1].delta*layers_[1].W*x_scale_.asDiagonal();
}
matrix_t neural_net::activation(const matrix_t& x)
{
return (2.*((-2.*x).array().exp() + 1.0).inverse() - 1.0).matrix();
}
matrix_t neural_net::activation_gradient(const matrix_t& x)
{
return (1.0-x.array().square()).matrix();
}
void neural_net::set_wb(const vector_t& wb)
{
int k = 0;
for (int i = 1; i < layers_.size(); ++i)
{
auto& layer = layers_[i];
for(int j = 0; j < layer.b.size(); ++j)
{
layer.b(j) = wb[k];
++k;
}
for(int j = 0; j < layer.W.size(); ++j)
{
layer.W(j) = wb[k];
++k;
}
}
}
vector_t neural_net::get_wb() const
{
int k = 0;
vector_t wb(nparam_);
for (int i = 1; i < layers_.size(); ++i)
{
auto& layer = layers_[i];
for(int j = 0; j < layer.b.size(); ++j)
{
wb[k] = layer.b(j);
++k;
}
for(int j = 0; j < layer.W.size(); ++j)
{
wb[k] = layer.W(j);
++k;
}
}
return wb;
}
void neural_net::autoscale(const matrix_t& X, const matrix_t& Y)
{
assert(layers_.front().size == X.cols());
assert(layers_.back().size == Y.cols());
assert(X.rows() == Y.rows());
x_shift_ = 0.5*(X.colwise().minCoeff().array() + X.colwise().maxCoeff().array());
x_scale_ = 2.0*(X.colwise().maxCoeff() - X.colwise().minCoeff()).array().inverse();
y_shift_ = 0.5*(Y.colwise().minCoeff().array() + Y.colwise().maxCoeff().array());
y_scale_ = 2.0*(Y.colwise().maxCoeff() - Y.colwise().minCoeff()).array().inverse();
}
void neural_net::autoscale_reset()
{
x_scale_ = vector_t::Ones(layers_.front().size);
x_shift_ = vector_t::Zero(layers_.front().size);
y_scale_ = vector_t::Ones(layers_.back().size);
y_shift_ = vector_t::Zero(layers_.back().size);
}
bool neural_net::write(const char* filename)
{
// open file
std::ofstream file(filename, std::ios::out);
// write everything to disk
if(file)
{
file.precision(16);
file << std::scientific;
// number of layers
file << static_cast<int>(layers_.size()) << std::endl;
// topology
for (int i = 0; i < layers_.size() - 1; ++i)
file << static_cast<int>(layers_[i].size) << " ";
file << static_cast<int>(layers_.back().size) << std::endl;
for(int i = 0; i < x_scale_.size() - 1; ++i) file << x_scale_[i] << " ";
file << x_scale_[x_scale_.size()-1] << std::endl;
for(int i = 0; i < x_shift_.size() - 1; ++i) file << x_shift_[i] << " ";
file << x_shift_[x_shift_.size()-1] << std::endl;
for(int i = 0; i < y_scale_.size() - 1; ++i) file << y_scale_[i] << " ";
file << y_scale_[y_scale_.size()-1] << std::endl;
for(int i = 0; i < y_shift_.size() - 1; ++i) file << y_shift_[i] << " ";
file << y_shift_[y_shift_.size()-1] << std::endl;
// weights
for (int i = 1; i < layers_.size(); ++i)
{
auto& layer = layers_[i];
for(int j = 0; j < layer.b.size(); ++j) file << layer.b(j) << std::endl;
for(int j = 0; j < layer.W.size(); ++j) file << layer.W(j) << std::endl;
}
}
else
return false;
file.close();
return true;
}
neural_net::~neural_net()
{
}
}