This repository has been archived by the owner on Dec 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 147
/
Copy pathrnn_eval.py
74 lines (60 loc) · 2.47 KB
/
rnn_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
"""
Run a holdout set of data through our trained RNN. Requires we first
run train_rnn.py and save the weights.
"""
from rnn_utils import get_network_wide, get_data
import argparse
import tensorflow as tf
import tflearn
import numpy as np
import sys
def load_labels(label_file):
label = {}
count = 0
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label[l.strip()] = count
count += 1
return label
def main(filename, frames, batch_size, num_classes, input_length):
# Get our data.
X, Y = get_data(input_data_dump, num_frames_per_video, labels, False)
num_classes = len(labels)
size_of_each_frame = X.shape[2]
# Get our network.
net = get_network_wide(num_frames_per_video, size_of_each_frame, num_classes)
# Train the model.
model = tflearn.DNN(net, tensorboard_verbose=0)
try:
model.load('checkpoints/' + model_file)
print("\nModel Exists! Loading it")
print("Model Loaded")
except Exception:
print("\nNo previous checkpoints of %s exist" % (model_file))
print("Exiting..")
sys.exit()
predictions = model.predict(X)
predictions = np.array([np.argmax(pred) for pred in predictions])
Y = np.array([np.argmax(each) for each in Y])
# Writing predictions and gold labels to file
rev_labels = dict(zip(list(labels.values()), list(labels.keys())))
print(rev_labels)
with open("result.txt", "w") as f:
f.write("gold, pred\n")
for a, b in zip(Y, predictions):
f.write("%s %s\n" % (rev_labels[a], rev_labels[b]))
acc = 100 * np.sum(predictions == Y) / len(Y)
print("Accuracy: ", acc)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test the RNN model')
parser.add_argument("input_file_dump", help="file containing intermediate representation of gestures from inception model.")
parser.add_argument("model_file", help="Name of the model file to be used for prediction.")
parser.add_argument("--label_file", help="path to label file generated by inception", default="retrained_labels.txt")
parser.add_argument("--batch_size", help="batch Size", default=32)
args = parser.parse_args()
labels = load_labels(args.label_file)
input_data_dump = args.input_file_dump
num_frames_per_video = 201
batch_size = args.batch_size
model_file = args.model_file
main(input_data_dump, num_frames_per_video, batch_size, labels, model_file)