-
Notifications
You must be signed in to change notification settings - Fork 8
/
swarm.py
executable file
·238 lines (202 loc) · 6.71 KB
/
swarm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#!/usr/bin/env python
# ----------------------------------------------------------------------
# Numenta Platform for Intelligent Computing (NuPIC)
# Copyright (C) 2013, Numenta, Inc. Unless you have an agreement
# with Numenta, Inc., for a separate license for this software code, the
# following terms and conditions apply:
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero Public License version 3 as
# published by the Free Software Foundation.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
# See the GNU Affero Public License for more details.
#
# You should have received a copy of the GNU Affero Public License
# along with this program. If not, see http://www.gnu.org/licenses.
#
# http://numenta.org/licenses/
# ----------------------------------------------------------------------
import sys
import os
from optparse import OptionParser
import re
import csv
import pprint
from nupic.swarming import permutations_runner
DEFAULT_PREDICTED_FIELD = "b0"
DEFAULT_OUTPUT_DIR = "data"
DEFAULT_SWARM_ITERATION_COUNT = 2000
DEFAULT_SWARM_SIZE = "medium"
DEFAULT_WORKERS = 4
verbose = False
SWARM_DESCRIPTION = {
"includedFields": [
],
"streamDef": {
"info": "",
"version": 1,
"streams": [
{
"info": "",
"source": "",
"columns": [
"*"
]
}
]
},
"inferenceType": "TemporalAnomaly",
"inferenceArgs": {
"predictionSteps": [
1
],
"predictedField": None
},
"iterationCount": None,
"swarmSize": None
}
parser = OptionParser(
usage="%prog <path/to/input> [options]\n\nSwarm over NuPIC WAV input file."
)
parser.add_option(
"-i",
"--iteration_count",
dest="iteration_count",
default=DEFAULT_SWARM_ITERATION_COUNT,
help="How many rows of input data to swarm over.")
parser.add_option(
"-w",
"--max_workers",
dest="max_workers",
default=DEFAULT_WORKERS,
help="How many CPU processes to use.")
parser.add_option(
"-p",
"--predicted_field",
dest="predicted_field",
default=DEFAULT_PREDICTED_FIELD,
help="Which field in the input is the field to predict?")
parser.add_option(
"-o",
"--output_directory",
dest="output_dir",
default=DEFAULT_OUTPUT_DIR,
help="Directory to write the NuPIC input file.")
parser.add_option(
"-s",
"--swarm_size",
dest="swarm_size",
default=DEFAULT_SWARM_SIZE,
help="How big should the swarm be? \"small\", \"medium\", or \"large\".")
parser.add_option(
"-v",
"--verbose",
action="store_true",
default=False,
dest="verbose",
help="Print debugging statements.")
def printSwarmSizeWarning(size):
if size == "small":
print "= THIS IS A DEBUG SWARM. DON'T EXPECT YOUR MODEL RESULTS TO BE GOOD."
elif size == "medium":
print "= Medium swarm. Sit back and relax, this could take awhile."
else:
print "= LARGE SWARM! Might as well load up the Star Wars Trilogy."
def extract_bucket_number_from_input_file(input_path):
bucket_count = 0
with open(input_path) as input_file:
reader = csv.reader(input_file)
headers = reader.next()
for header in headers:
if re.match("^b\d*$", header):
bucket_count += 1
return bucket_count
def get_swarm_description(
name, input_path, predicted_field,
iteration_count, swarm_size, buckets):
for i in xrange(buckets):
SWARM_DESCRIPTION["includedFields"].append({
"fieldName": "b%i" % i,
"fieldType": "float"
})
SWARM_DESCRIPTION["iterationCount"] = iteration_count
SWARM_DESCRIPTION["swarmSize"] = swarm_size
SWARM_DESCRIPTION["streamDef"]["info"] = name
stream = SWARM_DESCRIPTION["streamDef"]["streams"][0]
stream["info"] = name
stream["source"] = "file://%s" % os.path.abspath(input_path)
SWARM_DESCRIPTION["inferenceArgs"]["predictedField"] = predicted_field
return SWARM_DESCRIPTION
def model_params_to_string(modelParams):
pp = pprint.PrettyPrinter(indent=2)
return pp.pformat(modelParams)
def write_model_params_to_file(modelParams, name):
clean_name = name.replace(" ", "_").replace("-", "_")
params_name = "%s_model_params.py" % clean_name
out_dir = os.path.join(os.getcwd(), 'model_params')
if not os.path.isdir(out_dir):
os.mkdir(out_dir)
out_path = os.path.join(os.getcwd(), 'model_params', params_name)
with open(out_path, "wb") as outFile:
model_params_string = model_params_to_string(modelParams)
outFile.write("MODEL_PARAMS = \\\n%s" % model_params_string)
return out_path
def swarm_for_best_model_params(swarm_config, name, max_workers):
output_label = name
perm_work_dir = os.path.abspath('swarm')
if not os.path.exists(perm_work_dir):
os.mkdir(perm_work_dir)
if verbose:
print "Using %i swarm workers." % max_workers
print "\n** STARTING SWARM **\n\n"
model_params = permutations_runner.runWithConfig(
swarm_config,
{"maxWorkers": max_workers, "overwrite": True},
outputLabel=output_label,
outDir=perm_work_dir,
permWorkDir=perm_work_dir,
verbosity=0
)
model_params_file = write_model_params_to_file(model_params, name)
return model_params_file
def run(input_path, iteration_count, swarm_size,
predicted_field, max_workers, output_dir):
base_input_name = os.path.splitext(os.path.basename(input_path))[0]
name = base_input_name + "_" + predicted_field
buckets = extract_bucket_number_from_input_file(input_path)
print "================================================="
print "= Swarming on %s data..." % base_input_name
if verbose:
printSwarmSizeWarning(swarm_size)
print "= Found %i buckets in %s" % (buckets, input_path)
swarm_description = get_swarm_description(name, input_path, predicted_field,
iteration_count, swarm_size, buckets)
if verbose:
print "= SWARM DESCRIPTION:"
pprint.pprint(swarm_description)
print "================================================="
model_params = swarm_for_best_model_params(swarm_description,
name, max_workers)
print "\nWrote the following model params file:"
print "\t%s" % model_params
if __name__ == "__main__":
(options, args) = parser.parse_args(sys.argv[1:])
try:
input_path = args.pop(0)
except IndexError:
parser.print_help(sys.stderr)
sys.exit()
if not options.swarm_size in ["small", "medium", "large"]:
raise ValueError("smarm_size must be 'small', 'medium', or 'large'.")
verbose = options.verbose
run(
input_path,
int(options.iteration_count),
options.swarm_size,
options.predicted_field,
options.max_workers,
options.output_dir
)