Skip to content

Latest commit

 

History

History
135 lines (108 loc) · 2.62 KB

README_EN.md

File metadata and controls

135 lines (108 loc) · 2.62 KB

中文文档

Description

You are given an integer array nums. You are initially positioned at the array's first index, and each element in the array represents your maximum jump length at that position.

Return true if you can reach the last index, or false otherwise.

 

Example 1:

Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.

Example 2:

Input: nums = [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum jump length is 0, which makes it impossible to reach the last index.

 

Constraints:

  • 1 <= nums.length <= 104
  • 0 <= nums[i] <= 105

Solutions

Python3

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        mx = 0
        for i, num in enumerate(nums):
            if i > mx:
                return False
            mx = max(mx, i + num)
        return True

Java

class Solution {
    public boolean canJump(int[] nums) {
        int mx = 0;
        for (int i = 0; i < nums.length; ++i) {
            if (i > mx) {
                return false;
            }
            mx = Math.max(mx, i + nums[i]);
        }
        return true;
    }
}

C++

class Solution {
public:
    bool canJump(vector<int>& nums) {
        int mx = 0;
        for (int i = 0; i < nums.size(); ++i) {
            if (i > mx) {
                return false;
            }
            mx = max(mx, i + nums[i]);
        }
        return true;
    }
};

Go

func canJump(nums []int) bool {
	mx := 0
	for i, num := range nums {
		if i > mx {
			return false
		}
		mx = max(mx, i+num)
	}
	return true
}

func max(a, b int) int {
	if a > b {
		return a
	}
	return b
}

C#

public class Solution {
    public bool CanJump(int[] nums) {
        int mx = 0;
        for (int i = 0; i < nums.Length; ++i)
        {
            if (i > mx)
            {
                return false;
            }
            mx = Math.Max(mx, i + nums[i]);
        }
        return true;
    }
}

...