不使用任何库函数,设计一个 跳表 。
跳表 是在 O(log(n))
时间内完成增加、删除、搜索操作的数据结构。跳表相比于树堆与红黑树,其功能与性能相当,并且跳表的代码长度相较下更短,其设计思想与链表相似。
例如,一个跳表包含 [30, 40, 50, 60, 70, 90]
,然后增加 80
、45
到跳表中,以下图的方式操作:
Artyom Kalinin [CC BY-SA 3.0], via Wikimedia Commons
跳表中有很多层,每一层是一个短的链表。在第一层的作用下,增加、删除和搜索操作的时间复杂度不超过 O(n)
。跳表的每一个操作的平均时间复杂度是 O(log(n))
,空间复杂度是 O(n)
。
了解更多 : https://en.wikipedia.org/wiki/Skip_list
在本题中,你的设计应该要包含这些函数:
bool search(int target)
: 返回target是否存在于跳表中。void add(int num)
: 插入一个元素到跳表。bool erase(int num)
: 在跳表中删除一个值,如果num
不存在,直接返回false. 如果存在多个num
,删除其中任意一个即可。
注意,跳表中可能存在多个相同的值,你的代码需要处理这种情况。
示例 1:
输入 ["Skiplist", "add", "add", "add", "search", "add", "search", "erase", "erase", "search"] [[], [1], [2], [3], [0], [4], [1], [0], [1], [1]] 输出 [null, null, null, null, false, null, true, false, true, false] 解释 Skiplist skiplist = new Skiplist(); skiplist.add(1); skiplist.add(2); skiplist.add(3); skiplist.search(0); // 返回 false skiplist.add(4); skiplist.search(1); // 返回 true skiplist.erase(0); // 返回 false,0 不在跳表中 skiplist.erase(1); // 返回 true skiplist.search(1); // 返回 false,1 已被擦除
提示:
0 <= num, target <= 2 * 104
- 调用
search
,add
,erase
操作次数不大于5 * 104
因为节点 level
随机,所以需要多个 next
指针,其余操作类似单链表
class Node:
def __init__(self, val: int, level: int):
self.val = val
self.next = [None for _ in range(level)]
class Skiplist:
max_level = 16
p = 0.5
def __init__(self):
self.head = Node(-1, self.max_level)
self.level = 1
def search(self, target: int) -> bool:
p = self.head
for i in range(self.level - 1, -1, -1):
p = self.find_closest(p, i, target)
if p.next[i] != None and p.next[i].val == target:
return True
return False
def add(self, num: int) -> None:
level = self.random_level()
self.level = max(self.level, level)
node = Node(num, level)
p = self.head
for i in range(self.level - 1, -1, -1):
p = self.find_closest(p, i, num)
if i < level:
node.next[i] = p.next[i]
p.next[i] = node
def erase(self, num: int) -> bool:
ok = False
p = self.head
for i in range(self.level - 1, -1, -1):
p = self.find_closest(p, i, num)
if p.next[i] != None and p.next[i].val == num:
p.next[i] = p.next[i].next[i]
ok = True
while self.level > 1 and self.head.next[self.level - 1] == None:
self.level -= 1
return ok
def find_closest(self, p: Node, level: int, target: int) -> Node:
while p.next[level] != None and p.next[level].val < target:
p = p.next[level]
return p
def random_level(self) -> int:
level = 1
while level < self.max_level and random.random() < self.p:
level += 1
return level
# Your Skiplist object will be instantiated and called as such:
# obj = Skiplist()
# param_1 = obj.search(target)
# obj.add(num)
# param_3 = obj.erase(num)
class Skiplist {
private static final int DEFAULT_MAX_LEVEL = 16;
private static final double DEFAULT_P_FACTOR = 0.5;
private final Node head;
private int currentLevel;
public Skiplist() {
this.head = new Node(0, DEFAULT_MAX_LEVEL);
this.currentLevel = 1;
}
public boolean search(int target) {
Node node = head;
for (int i = currentLevel - 1; i >= 0; i--) {
node = findClosest(node, i, target);
if (node.next[i] != null && node.next[i].value == target) {
return true;
}
}
return false;
}
public void add(int num) {
int level = randomLevel();
currentLevel = Math.max(currentLevel, level);
Node newNode = new Node(num, level);
Node updateNode = head;
for (int i = currentLevel - 1; i >= 0; i--) {
updateNode = findClosest(updateNode, i, num);
if (i < level) {
newNode.next[i] = updateNode.next[i];
updateNode.next[i] = newNode;
}
}
}
public boolean erase(int num) {
boolean exist = false;
Node node = head;
for (int i = currentLevel - 1; i >= 0; i--) {
node = findClosest(node, i, num);
if (node.next[i] != null && node.next[i].value == num) {
node.next[i] = node.next[i].next[i];
exist = true;
}
}
while (currentLevel > 1 && head.next[currentLevel - 1] == null) {
currentLevel--;
}
return exist;
}
private Node findClosest(Node node, int level, int value) {
while (node.next[level] != null && node.next[level].value < value) {
node = node.next[level];
}
return node;
}
private int randomLevel() {
int level = 1;
while (level < DEFAULT_MAX_LEVEL && Math.random() < DEFAULT_P_FACTOR) {
level++;
}
return level;
}
static class Node {
int value;
Node[] next;
Node(int value, int level) {
this.value = value;
this.next = new Node[level];
}
}
}
func init() { rand.Seed(time.Now().UnixNano()) }
const (
maxLevel = 16
p = 0.5
)
type node struct {
val int
next []*node
}
func newNode(val, level int) *node {
return &node{
val: val,
next: make([]*node, level),
}
}
type Skiplist struct {
head *node
level int
}
func Constructor() Skiplist {
return Skiplist{
head: newNode(-1, maxLevel),
level: 1,
}
}
func (this *Skiplist) Search(target int) bool {
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, target)
if p.next[i] != nil && p.next[i].val == target {
return true
}
}
return false
}
func (this *Skiplist) Add(num int) {
level := randomLevel()
if level > this.level {
this.level = level
}
node := newNode(num, level)
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, num)
if i < level {
node.next[i] = p.next[i]
p.next[i] = node
}
}
}
func (this *Skiplist) Erase(num int) bool {
ok := false
p := this.head
for i := this.level - 1; i >= 0; i-- {
p = findClosest(p, i, num)
if p.next[i] != nil && p.next[i].val == num {
p.next[i] = p.next[i].next[i]
ok = true
}
}
for this.level > 1 && this.head.next[this.level-1] == nil {
this.level--
}
return ok
}
func findClosest(p *node, level, target int) *node {
for p.next[level] != nil && p.next[level].val < target {
p = p.next[level]
}
return p
}
func randomLevel() int {
level := 1
for level < maxLevel && rand.Float64() < p {
level++
}
return level
}
/**
* Your Skiplist object will be instantiated and called as such:
* obj := Constructor();
* param_1 := obj.Search(target);
* obj.Add(num);
* param_3 := obj.Erase(num);
*/