-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_transfer
116 lines (88 loc) · 3.56 KB
/
train_transfer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
import torch
from torch import optim, nn
import visdom
import torchvision
from torch.utils.data import DataLoader
from pokeman import Pokemon
# from resnet import ResNet18
from torchvision.models import resnet18
from utils import Flatten
batchsz = 32
lr = 1e-3
epochs = 10
# device = torch.device('cuda')
torch.manual_seed(1234)
train_db = Pokemon('pokemon', 224, mode='train')
val_db = Pokemon('pokemon', 224, mode='val')
test_db = Pokemon('pokemon', 224, mode='test')
train_loader = DataLoader(train_db, batch_size=batchsz, shuffle=True,
num_workers=4)
val_loader = DataLoader(val_db, batch_size=batchsz, num_workers=2)
test_loader = DataLoader(test_db, batch_size=batchsz, num_workers=2)
viz = visdom.Visdom()
# 将计算准确率的过程封装成函数,方便调用
def evalute(model, loader):
model.eval()
correct = 0
total = len(loader.dataset)
for x, y in loader:
# x, y = x.to(device), y.to(device)
with torch.no_grad():
logits = model(x)
pred = logits.argmax(dim=1)
correct += torch.eq(pred, y).sum().float().item()
return correct / total
def main():
# 此处没有利用resnet中的模型,而是直接利用网上resnet18模型
# model = ResNet18(5).to(device)
trained_model = resnet18(pretrained=True)
# 将已将训练好的模型resnet18中除了最后一层外,全部迁移过来,自己在加上最后一层全连接层,所以不需要model = ResNet18(5)
# [:-1]不要最后一层。*:将其打散。
# Flatten为自定义的类
'''因为此处加了.to(device)
model = nn.Sequential(*list(trained_model.children())[:-1], # [b, 512, 1, 1]
Flatten(), # [b, 512, 1, 1] => [b, 512]
nn.Linear(512, 5)
).to(device)
# x = torch.randn(2, 3, 224, 224)
# print(model(x).shape)
'''
model = nn.Sequential(*list(trained_model.children())[:-1], # [b, 512, 1, 1]
Flatten(), # [b, 512, 1, 1] => [b, 512]
nn.Linear(512, 5)
)
optimizer = optim.Adam(model.parameters(), lr=lr)
criteon = nn.CrossEntropyLoss()
best_acc, best_epoch = 0, 0
global_step = 0
viz.line([0], [-1], win='loss', opts=dict(title='loss'))
viz.line([0], [-1], win='val_acc', opts=dict(title='val_acc'))
for epoch in range(epochs):
for step, (x, y) in enumerate(train_loader):
# x: [b, 3, 224, 224], y: [b]
# x, y = x.to(device), y.to(device)
model.train()
logits = model(x)
loss = criteon(logits, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
viz.line([loss.item()], [global_step], win='loss', update='append')
global_step += 1
if epoch % 1 == 0:
# 利用计算准确率的函数计算
val_acc = evalute(model, val_loader)
# 利用val数据集筛选最高准确率下的参数,并保存下来
if val_acc > best_acc:
best_epoch = epoch
best_acc = val_acc
torch.save(model.state_dict(), 'best.mdl')
viz.line([val_acc], [global_step], win='val_acc', update='append')
print('best acc:', best_acc, 'best epoch:', best_epoch)
model.load_state_dict(torch.load('best.mdl'))
print('loaded from ckpt!')
test_acc = evalute(model, test_loader)
print('test acc:', test_acc)
if __name__ == '__main__':
main()