-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtest.py
171 lines (142 loc) · 5.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import torch.optim.lr_scheduler as lr_scheduler
from torch.autograd import Variable
import torchvision.transforms as transforms
from torchvision.utils import save_image
from model import create_model
from model import GANLoss
from model import VGGLoss, PerceptualLoss
from data import SGNDatasetTest
import random
import PIL
import os
import scipy.io as sio
from PIL import Image
parser = argparse.ArgumentParser()
parser.add_argument('--img_root', type=str, required=True,
help='root directory that contains images')
parser.add_argument('--model_path', type=str, required=True,
help='checkpoint file')
parser.add_argument('--save_dir', type=str, required=True,
help='checkpoint file')
parser.add_argument('--num_threads', type=int, default=4,
help='number of threads for fetching data (default: 4)')
parser.add_argument('--batch_size', type=int, default=1,
help='batch size (default: 1)')
parser.add_argument('--no_cuda', action='store_true',
help='do not use cuda')
parser.add_argument('--isEnhancer', action='store_true',
help='Enhancer Model')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--manualSeed', type=int, help='manual seed')
args = parser.parse_args()
if not args.no_cuda and not torch.cuda.is_available():
print("WARNING: You have not a CUDA device")
args.no_cuda = True
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
print("Random Seed: ", args.manualSeed)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
gpu_ids = []
for str_id in args.gpu_ids.split(','):
id = int(str_id)
if id >= 0:
gpu_ids.append(id)
args.gpu_ids = gpu_ids
if len(args.gpu_ids) > 0:
torch.cuda.set_device(args.gpu_ids[0])
torch.cuda.manual_seed_all(args.manualSeed)
def requires_grad(model, flag=True):
for p in model.parameters():
p.requires_grad = flag
def init_z_foreach_layout(category_map, batchsize):
numofseg = 150
print(category_map.size())
ZT = torch.FloatTensor(batchsize, 100, category_map.size(1), category_map.size(2))
ZT.fill_(0.0)
ZT = ZT.cuda()
z = torch.FloatTensor(batchsize, 100, 1, 1).cuda()
for j in range(numofseg + 1):
mask = category_map.eq(j)
if (mask.any()):
z = torch.rand(batchsize, 100, 1, 1).cuda()
z.resize_(batchsize, 100, 1, 1).normal_(0, 1)
z = z.expand(batchsize, 100, category_map.size(1), category_map.size(2))
mask = mask.unsqueeze(1)
mask = mask.type(torch.FloatTensor)
ZT = ZT.add_(z * mask.cuda())
noise = torch.rand(batchsize, 100, category_map.size(1), category_map.size(2)).cuda()
return ZT + noise
def colorencode(category_im):
category_im = category_im[0]
colorcodes = sio.loadmat(args.img_root + "/color150.mat")
colorcodes = colorcodes['colors']
idx = np.unique(category_im)
h, w = category_im.shape
colorCodeIm = np.zeros((h, w, 3)).astype(np.uint8)
for i in range(idx.shape[0]):
if idx[i] == 0:
continue
b = np.where(category_im == idx[i])
rgb = colorcodes[idx[i] - 1]
bgr = rgb[::-1]
colorCodeIm[b] = rgb
return colorCodeIm
if __name__ == '__main__':
print('Loading a dataset...')
test_data = SGNDatasetTest(args)
test_loader = data.DataLoader(test_data,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_threads)
# pretrained model
print('Loading a pretrained model...')
G, _ = create_model(args)
ind = args.model_path.rfind("/")
model_name = args.model_path[ind + 1 :]
G.load_state_dict(torch.load(args.model_path))
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if not os.path.exists(args.save_dir + '/real'):
os.mkdir(args.save_dir + '/real')
if not os.path.exists(args.save_dir + '/' + model_name):
os.mkdir(args.save_dir + '/' + model_name)
if not os.path.exists(args.save_dir + '/colorseg'):
os.mkdir(args.save_dir + '/' + '/colorseg')
if not os.path.exists(args.save_dir + '/annotation'):
os.mkdir(args.save_dir + '/' + '/annotation')
gt_attributes = np.zeros((1338, 40))
if not args.no_cuda:
G.cuda()
for i, (img, att, seg, cat) in enumerate(test_loader):
bs = img.size(0)
gt_attributes[i,:] = att.data.numpy()
seg = seg.type(torch.FloatTensor)
img = Variable(img.cuda())
att = Variable(att.cuda())
seg = Variable(seg.cuda())
cat = Variable(cat.cuda())
if i == 0:
seg1 = seg
att1 = att
cat1 = cat
img1 = img
cat_np = cat.data.cpu().numpy()
colorseg = colorencode(cat_np)
Z = init_z_foreach_layout(cat, bs)
img_norm = img * 2 - 1
img_G = img_norm
fake = G(Z, seg, att)
save_image((fake.data + 1) * 0.5, args.save_dir + '/' + model_name +'/%d.png' % (i + 1))
save_image((img_G.data + 1) * 0.5, args.save_dir + '/real/%d.png' % (i + 1))
colorim = Image.fromarray(colorseg)
annot = Image.fromarray(cat_np[0])
colorim.save(args.save_dir + '/colorseg/%d.png' % (i + 1))
annot.save(args.save_dir + '/annotation/%d.png' % (i + 1))
np.save(args.save_dir + '/' + 'test_attributes', gt_attributes)