-
Notifications
You must be signed in to change notification settings - Fork 103
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adds template for translation tasks (#391)
* implement tranlsation prompt * add small coment about tranlsation prompt * change formatting to reformat language dependant parts --------- Co-authored-by: Clémentine Fourrier <[email protected]>
- Loading branch information
1 parent
6af5280
commit f235abc
Showing
3 changed files
with
286 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2024 The HuggingFace Team | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
from typing import Callable | ||
|
||
from langcodes import standardize_tag | ||
from typing_extensions import NotRequired, TypedDict | ||
|
||
from lighteval.tasks.templates.continuation import get_continuation_prompt_function | ||
from lighteval.tasks.templates.multichoice import create_adapter_from_dict | ||
from lighteval.tasks.templates.utils.formatting_utils import capitalize, fix_ending_punct | ||
from lighteval.tasks.templates.utils.formulation import Formulation, MCFFormulation | ||
from lighteval.tasks.templates.utils.translation_literals import TRANSLATION_LITERALS | ||
from lighteval.utils.language import Language | ||
from lighteval.utils.utils import as_list | ||
|
||
|
||
# Template chosen so that it's not very language-dependent, as it's not clear whether one should use the target or source language. | ||
# It's also the best template based on https://arxiv.org/pdf/2301.07069. | ||
|
||
|
||
TRANSLATION_CONTEXT = "{source_label}{colon}{sentence_space}{source_text}{sentence_space}{target_label}{colon}" | ||
|
||
|
||
# Defined for type hinting only | ||
class TranslationInput(TypedDict): | ||
""" | ||
Input for the Translation task. | ||
Args: | ||
source_text: The source text to be translated | ||
target_text: The target text to be translated | ||
instruction (optional): The instruction of the Translation task (e.g. Translate the following text to Turkish) | ||
""" | ||
|
||
source_text: str | ||
target_text: str | list[str] | ||
gold_idx: NotRequired[int | list[int]] | ||
instruction: NotRequired[str] | ||
|
||
|
||
class TranslationAdapter(TypedDict): | ||
""" | ||
Adapter for mapping from the dataset row into the TranslationInput format. | ||
Args: | ||
source_text: Column name in the row that contains the source text to be translated | ||
target_text: Column name in the row that contains the target text to be translated | ||
instruction (optional): Column name in the row that contains the instruction of the task (e.g. Translate the following text to Turkish) | ||
""" | ||
|
||
source_text: str | ||
target_text: str | ||
gold_idx: NotRequired[int | list[int]] | ||
instruction: NotRequired[str] | ||
|
||
|
||
def get_translation_prompt_function( | ||
source_language: Language, | ||
target_language: Language, | ||
adapter: Callable[[dict], TranslationInput | None] | TranslationAdapter, | ||
formulation: Formulation = MCFFormulation(), | ||
): | ||
""" | ||
Create a templated prompt function for a Translation task. | ||
Example tasks: | ||
- WMT2016 | ||
- WMT2017 | ||
Format: | ||
*CF* | ||
EN: How are you? TR: | Nasılsın? | ||
*Hybrid* | ||
EN: How are you? TR: | ||
A. Nasılsın? | ||
B. Jak se máš? | ||
Answer: | Nasılsın?/Jak se máš? | ||
*MCF* | ||
EN: How are you? TR: | ||
A. Nasılsın? | ||
B. Jak se máš? | ||
Answer: | A/B | ||
Args: | ||
adapter (Callable[[dict], TranslationInput] | TranslationAdapter): Either a function that takes a dataset row and returns a TranslationInput, or a dictionary with keys corresponding to the field names in the dataset row. | ||
Note: Both TranslationAdapter and TranslationInput are TypeDicts, this means that the caller provides dictionary and doesn't initialize any class! | ||
formulation (Formulation, optional): The formulation to use for the task. Defaults to MCFFormulation(). | ||
Returns: | ||
Callable: A function that generates Translation prompts based on the given parameters. | ||
""" | ||
adapter_fn = create_adapter_from_dict(adapter) | ||
continuation_prompt_fn = get_continuation_prompt_function( | ||
Language.ENGLISH, | ||
{"context": "context", "continuations": "continuations", "gold_idx": "gold_idx"}, | ||
formulation, | ||
fix_formatting=False, | ||
) | ||
source_translation_literals = TRANSLATION_LITERALS[source_language] | ||
target_translation_literals = TRANSLATION_LITERALS[target_language] | ||
|
||
source_label_string = standardize_tag(source_language.value).upper() | ||
target_label_string = standardize_tag(target_language.value).upper() | ||
|
||
def translation_prompt( | ||
line: dict, | ||
task_name: str, | ||
): | ||
input_data = adapter_fn(line) | ||
if input_data is None: | ||
return None | ||
|
||
source_text = capitalize(fix_ending_punct(input_data["source_text"], source_translation_literals)) | ||
|
||
context = TRANSLATION_CONTEXT.format( | ||
source_label=source_label_string, | ||
source_text=source_text, | ||
target_label=target_label_string, | ||
colon=":", | ||
sentence_space=" ", | ||
) | ||
|
||
continuations = [ | ||
capitalize(fix_ending_punct(text, target_translation_literals)) | ||
for text in as_list(input_data["target_text"]) | ||
] | ||
|
||
return continuation_prompt_fn( | ||
{ | ||
"instruction": input_data.get("instruction", ""), | ||
"context": context, | ||
"continuations": continuations, | ||
"gold_idx": input_data.get("gold_idx", list(range(len(continuations)))), | ||
}, | ||
task_name, | ||
) | ||
|
||
return translation_prompt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,120 @@ | ||
# MIT License | ||
|
||
# Copyright (c) 2024 The HuggingFace Team | ||
|
||
# Permission is hereby granted, free of charge, to any person obtaining a copy | ||
# of this software and associated documentation files (the "Software"), to deal | ||
# in the Software without restriction, including without limitation the rights | ||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
# copies of the Software, and to permit persons to whom the Software is | ||
# furnished to do so, subject to the following conditions: | ||
|
||
# The above copyright notice and this permission notice shall be included in all | ||
# copies or substantial portions of the Software. | ||
|
||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
# SOFTWARE. | ||
|
||
|
||
from lighteval.tasks.templates.translation import get_translation_prompt_function | ||
from lighteval.tasks.templates.utils.formulation import CFFormulation, MCFFormulation | ||
from lighteval.utils.language import Language | ||
|
||
|
||
def test_translation_prompt_cf(): | ||
""" | ||
Tests that translation prompt function works correctly for CF formulation. | ||
""" | ||
test_input = { | ||
"source_text": "Ahoj, jak se máš?", | ||
"target_text": "Bonjour, comment allez-vous?", | ||
} | ||
|
||
prompt_fn = get_translation_prompt_function( | ||
source_language=Language.CZECH, | ||
target_language=Language.FRENCH, | ||
adapter=lambda x: { | ||
"source_text": x["source_text"], | ||
"target_text": x["target_text"], | ||
}, | ||
formulation=CFFormulation(), | ||
) | ||
|
||
doc = prompt_fn(test_input, "test_task") | ||
assert doc is not None | ||
|
||
assert doc.query == "CS: Ahoj, jak se máš? FR:" | ||
assert doc.unconditioned_query == "" | ||
assert doc.choices == [" Bonjour, comment allez-vous?"] | ||
assert doc.gold_index == [0] | ||
|
||
|
||
def test_translation_prompt_mcf(): | ||
""" | ||
Tests that translation prompt function works correctly for MCF formulation. | ||
""" | ||
test_input = { | ||
"source_text": "Ahoj, jak se máš?", | ||
"target_text": ["Bonjour, comment allez-vous?", "Ciao, come stai?"], | ||
} | ||
|
||
prompt_fn = get_translation_prompt_function( | ||
source_language=Language.CZECH, | ||
target_language=Language.FRENCH, | ||
adapter=lambda x: { | ||
"source_text": x["source_text"], | ||
"target_text": x["target_text"], | ||
"gold_idx": 0, | ||
}, | ||
formulation=MCFFormulation(), | ||
) | ||
|
||
doc = prompt_fn(test_input, "test_task") | ||
assert doc is not None | ||
|
||
assert ( | ||
doc.query | ||
== """\ | ||
CS: Ahoj, jak se máš? FR: | ||
A. Bonjour, comment allez-vous? | ||
B. Ciao, come stai? | ||
Answer:\ | ||
""" | ||
) | ||
assert doc.unconditioned_query == "Answer:" | ||
assert doc.choices == [" A", " B"] | ||
assert doc.gold_index == [0] | ||
|
||
|
||
def test_translation_prompt_cf_formatting(): | ||
""" | ||
Tests that translation prompt function works correctly for CF formulation with formatting. | ||
""" | ||
test_input = { | ||
"source_text": "How are you?", | ||
"target_text": ["你好吗?"], | ||
} | ||
|
||
prompt_fn = get_translation_prompt_function( | ||
source_language=Language.ENGLISH, | ||
target_language=Language.CHINESE, | ||
adapter=lambda x: { | ||
"source_text": x["source_text"], | ||
"target_text": x["target_text"], | ||
"gold_idx": 0, | ||
}, | ||
formulation=CFFormulation(), | ||
) | ||
|
||
doc = prompt_fn(test_input, "test_task") | ||
assert doc is not None | ||
|
||
assert doc.query == "EN: How are you? ZH:" | ||
assert doc.unconditioned_query == "" | ||
assert doc.choices == [" 你好吗?"] | ||
assert doc.gold_index == [0] |