Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds template for translation tasks #391

Merged
merged 4 commits into from
Nov 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 9 additions & 1 deletion src/lighteval/tasks/templates/continuation.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ def get_continuation_prompt_function(
language: Language,
adapter: Callable[[dict], ContinuationInput | None] | ContinuationDictAdapter,
formulation: Formulation = MCFFormulation(),
fix_formatting: bool = True,
):
"""
Create a templated prompt function for a Continuation task.
Expand Down Expand Up @@ -118,6 +119,7 @@ def get_continuation_prompt_function(
adapter (Callable[[dict], ContinuationInput] | ContinuationDictAdapter): Either a function that takes a dataset row and returns a ContinuationInput, or a dictionary with keys corresponding to the field names in the dataset row.
Note: Both ContinuationDictAdapter and ContinuationInput are TypeDicts, this means that the caller provides dictionary and doesn't initialize any class!
formulation (Formulation, optional): The formulation (MCF/Hybrid/CF) to use for the task. Defaults to MCFFormulation().
fix_formatting (bool, optional): Whether to fix the formatting of the text by capitalizing and fixing punctuation based on language. If False, the text will be used as-is. Defaults to True.
Returns:
Callable: A function that generates Continuation prompt based on the given parameters.
"""
Expand All @@ -132,10 +134,16 @@ def prepare_prompt(line: dict):
instruction_val = cont_input.get("instruction")
instruction = f"{instruction_val}\n" if instruction_val else ""

context = f"{capitalize(fix_ending_punct(cont_input['context'], translation_literals))}"
context = (
f"{capitalize(fix_ending_punct(cont_input['context'], translation_literals))}"
if fix_formatting
else cont_input["context"]
)

continuations = [
fix_capitalization(context, fix_ending_punct(continuation, translation_literals), translation_literals)
if fix_formatting
else continuation
for continuation in cont_input["continuations"]
]

Expand Down
156 changes: 156 additions & 0 deletions src/lighteval/tasks/templates/translation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
# MIT License

# Copyright (c) 2024 The HuggingFace Team

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

from typing import Callable

from langcodes import standardize_tag
from typing_extensions import NotRequired, TypedDict

from lighteval.tasks.templates.continuation import get_continuation_prompt_function
from lighteval.tasks.templates.multichoice import create_adapter_from_dict
from lighteval.tasks.templates.utils.formatting_utils import capitalize, fix_ending_punct
from lighteval.tasks.templates.utils.formulation import Formulation, MCFFormulation
from lighteval.tasks.templates.utils.translation_literals import TRANSLATION_LITERALS
from lighteval.utils.language import Language
from lighteval.utils.utils import as_list


# Template chosen so that it's not very language-dependent, as it's not clear whether one should use the target or source language.
# It's also the best template based on https://arxiv.org/pdf/2301.07069.


TRANSLATION_CONTEXT = "{source_label}{colon}{sentence_space}{source_text}{sentence_space}{target_label}{colon}"


# Defined for type hinting only
class TranslationInput(TypedDict):
"""
Input for the Translation task.
Args:
source_text: The source text to be translated
target_text: The target text to be translated
instruction (optional): The instruction of the Translation task (e.g. Translate the following text to Turkish)
"""

source_text: str
target_text: str | list[str]
gold_idx: NotRequired[int | list[int]]
instruction: NotRequired[str]


class TranslationAdapter(TypedDict):
"""
Adapter for mapping from the dataset row into the TranslationInput format.
Args:
source_text: Column name in the row that contains the source text to be translated
target_text: Column name in the row that contains the target text to be translated
instruction (optional): Column name in the row that contains the instruction of the task (e.g. Translate the following text to Turkish)
"""

source_text: str
target_text: str
gold_idx: NotRequired[int | list[int]]
instruction: NotRequired[str]


def get_translation_prompt_function(
source_language: Language,
target_language: Language,
adapter: Callable[[dict], TranslationInput | None] | TranslationAdapter,
formulation: Formulation = MCFFormulation(),
):
"""
Create a templated prompt function for a Translation task.
Example tasks:
- WMT2016
- WMT2017

Format:
*CF*
EN: How are you? TR: | Nasılsın?

*Hybrid*
EN: How are you? TR:
A. Nasılsın?
B. Jak se máš?
Answer: | Nasılsın?/Jak se máš?

*MCF*
EN: How are you? TR:
A. Nasılsın?
B. Jak se máš?
Answer: | A/B

Args:
adapter (Callable[[dict], TranslationInput] | TranslationAdapter): Either a function that takes a dataset row and returns a TranslationInput, or a dictionary with keys corresponding to the field names in the dataset row.
Note: Both TranslationAdapter and TranslationInput are TypeDicts, this means that the caller provides dictionary and doesn't initialize any class!
formulation (Formulation, optional): The formulation to use for the task. Defaults to MCFFormulation().
Returns:
Callable: A function that generates Translation prompts based on the given parameters.
"""
adapter_fn = create_adapter_from_dict(adapter)
continuation_prompt_fn = get_continuation_prompt_function(
clefourrier marked this conversation as resolved.
Show resolved Hide resolved
Language.ENGLISH,
{"context": "context", "continuations": "continuations", "gold_idx": "gold_idx"},
formulation,
fix_formatting=False,
)
source_translation_literals = TRANSLATION_LITERALS[source_language]
target_translation_literals = TRANSLATION_LITERALS[target_language]

source_label_string = standardize_tag(source_language.value).upper()
target_label_string = standardize_tag(target_language.value).upper()

def translation_prompt(
line: dict,
task_name: str,
):
input_data = adapter_fn(line)
if input_data is None:
return None

source_text = capitalize(fix_ending_punct(input_data["source_text"], source_translation_literals))

context = TRANSLATION_CONTEXT.format(
source_label=source_label_string,
source_text=source_text,
target_label=target_label_string,
colon=":",
sentence_space=" ",
)

continuations = [
capitalize(fix_ending_punct(text, target_translation_literals))
for text in as_list(input_data["target_text"])
]

return continuation_prompt_fn(
{
"instruction": input_data.get("instruction", ""),
"context": context,
"continuations": continuations,
"gold_idx": input_data.get("gold_idx", list(range(len(continuations)))),
},
task_name,
)

return translation_prompt
120 changes: 120 additions & 0 deletions tests/tasks/templates/test_translation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# MIT License

# Copyright (c) 2024 The HuggingFace Team

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


from lighteval.tasks.templates.translation import get_translation_prompt_function
from lighteval.tasks.templates.utils.formulation import CFFormulation, MCFFormulation
from lighteval.utils.language import Language


def test_translation_prompt_cf():
"""
Tests that translation prompt function works correctly for CF formulation.
"""
test_input = {
"source_text": "Ahoj, jak se máš?",
"target_text": "Bonjour, comment allez-vous?",
}

prompt_fn = get_translation_prompt_function(
source_language=Language.CZECH,
target_language=Language.FRENCH,
adapter=lambda x: {
"source_text": x["source_text"],
"target_text": x["target_text"],
},
formulation=CFFormulation(),
)

doc = prompt_fn(test_input, "test_task")
assert doc is not None

assert doc.query == "CS: Ahoj, jak se máš? FR:"
assert doc.unconditioned_query == ""
assert doc.choices == [" Bonjour, comment allez-vous?"]
assert doc.gold_index == [0]


def test_translation_prompt_mcf():
"""
Tests that translation prompt function works correctly for MCF formulation.
"""
test_input = {
"source_text": "Ahoj, jak se máš?",
"target_text": ["Bonjour, comment allez-vous?", "Ciao, come stai?"],
}

prompt_fn = get_translation_prompt_function(
source_language=Language.CZECH,
target_language=Language.FRENCH,
adapter=lambda x: {
"source_text": x["source_text"],
"target_text": x["target_text"],
"gold_idx": 0,
},
formulation=MCFFormulation(),
)

doc = prompt_fn(test_input, "test_task")
assert doc is not None

assert (
doc.query
== """\
CS: Ahoj, jak se máš? FR:
A. Bonjour, comment allez-vous?
B. Ciao, come stai?
Answer:\
"""
)
assert doc.unconditioned_query == "Answer:"
assert doc.choices == [" A", " B"]
assert doc.gold_index == [0]


def test_translation_prompt_cf_formatting():
"""
Tests that translation prompt function works correctly for CF formulation with formatting.
"""
test_input = {
"source_text": "How are you?",
"target_text": ["你好吗?"],
}

prompt_fn = get_translation_prompt_function(
source_language=Language.ENGLISH,
target_language=Language.CHINESE,
adapter=lambda x: {
"source_text": x["source_text"],
"target_text": x["target_text"],
"gold_idx": 0,
},
formulation=CFFormulation(),
)

doc = prompt_fn(test_input, "test_task")
assert doc is not None

assert doc.query == "EN: How are you? ZH:"
assert doc.unconditioned_query == ""
assert doc.choices == [" 你好吗?"]
assert doc.gold_index == [0]
Loading