-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_rank_multi.py
executable file
·686 lines (602 loc) · 32.1 KB
/
train_rank_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
# train.py
import torch
import torchvision
import torchvision.utils as vutils
import torch.nn as nn
import torch.optim as optim
import copy
import matplotlib.pyplot as plt
from skimage.measure import compare_ssim, compare_psnr
import time
import os
import numpy as np
import plugins
from losses import RankOrderLoss
from evaluate import Logits_Classification
class Trainer():
def __init__(self, args, modelD, modelG, Encoder, criterion, prevD, prevG):
self.args = args
self.modelD = modelD
self.modelG = [modelG for i in range(args.nranks-1)]
self.Encoder = Encoder
self.prevD = prevD
self.prevG = prevG
self.criterion = criterion
self.cuda = args.cuda
self.device = torch.device("cuda" if (self.cuda and torch.cuda.is_available()) else "cpu")
self.logits_loss = RankOrderLoss(self.device)
self.logits_eval = Logits_Classification(threshold=0.5)
self.plot_update_interval = args.plot_update_interval
self.port = args.port
self.env = args.env
self.result_path = args.result_path
self.save_path = args.save
self.log_path = args.logs
self.dataset_fraction = args.dataset_fraction
self.len_dataset = 0
self.stage_epochs = args.stage_epochs
self.start_stage = args.start_stage
self.nchannels = args.nchannels
self.batch_size = args.batch_size
self.resolution_high = args.resolution_high
self.resolution_wide = args.resolution_wide
self.nz = args.nz
self.gp = args.gp
self.gp_lambda = args.gp_lambda
self.scheduler_patience = args.scheduler_patience
self.scheduler_maxlen = args.scheduler_maxlen
self.nepochs = args.nepochs
self.weight_gan_final = args.weight_gan_final
self.weight_vae_init = args.weight_vae_init
self.weight_kld = args.weight_kld
self.margin = args.margin
self.num_stages = args.num_stages
self.nranks = args.nranks
self.lr_vae = args.learning_rate_vae
self.lr_dis = args.learning_rate_dis
self.lr_gen = args.learning_rate_gen
self.lr_decay = args.learning_rate_decay
self.momentum = args.momentum
self.adam_beta1 = args.adam_beta1
self.adam_beta2 = args.adam_beta2
self.weight_decay = args.weight_decay
self.optim_method = args.optim_method
self.vae_loss_type = args.vae_loss_type
# for classification
self.fixed_noise = torch.FloatTensor(self.batch_size, self.nz).normal_(0, 1).to(self.device)#, volatile=True)
self.epsilon = torch.randn(self.batch_size, self.nz).to(self.device)
self.target_real = torch.ones(self.batch_size, self.nranks-1).to(self.device)
self.target_fake = torch.zeros(self.nranks-1, self.batch_size, self.nranks-1).to(self.device)
for i in range(self.nranks-1):
self.target_fake[i, :, :i] = 1
self.sigmoid = torch.sigmoid
# Initialize optimizer
self.optimizerE = self.initialize_optimizer(self.Encoder, lr=self.lr_vae, optim_method='Adam')
self.optimizerD = self.initialize_optimizer(self.modelD, lr=self.lr_dis, optim_method='Adam', weight_decay=0.01*self.lr_dis)
self.optimizerG = []
for i in range(self.nranks-1):
self.optimizerG.append(self.initialize_optimizer(self.modelG[i], lr=self.lr_gen, optim_method='Adam'))
# logging training
self.log_loss_train = plugins.Logger(args.logs, 'TrainLogger.txt')
G_loss_items = ['Loss_G{}'.format(i) for i in range(self.nranks-1)]
self.params_loss_train = G_loss_items + ['Loss_D0', 'Acc_Real', 'Acc_Fake']
self.log_loss_train.register(self.params_loss_train)
# monitor training
self.monitor_train = plugins.Monitor()
self.params_monitor_train = G_loss_items + ['Loss_D0', 'Acc_Real', 'Acc_Fake']
self.monitor_train.register(self.params_monitor_train)
# Define visualizer plot type for given dataset
if args.net_type == 'gmm':
self.plot_update_interval = 300
if self.args.gmm_dim == 1:
output_dtype, output_vtype = 'vector', 'histogram'
elif self.args.gmm_dim == 2:
output_dtype, output_vtype = 'vector', 'scatter'
else:
output_dtype, output_vtype = 'images', 'images'
self.fixed_noise = self.fixed_noise.unsqueeze(-1).unsqueeze(-1)
# visualize training
self.visualizer_train = plugins.Visualizer(port=self.port, env=self.env, title='Train')
self.params_visualizer_train = {
'Loss_D0':{'dtype':'scalar', 'vtype':'plot', 'win': 'loss_gan', 'layout': {'windows': ['Loss_D0'] + G_loss_items, 'id': 0}},
'Acc_Real':{'dtype':'scalar','vtype':'plot', 'win': 'acc', 'layout': {'windows': ['Acc_Real', 'Acc_Fake'], 'id': 0}},
'Acc_Fake':{'dtype':'scalar','vtype':'plot', 'win': 'acc', 'layout': {'windows': ['Acc_Real', 'Acc_Fake'], 'id': 1}},
'Learning_Rate_G':{'dtype':'scalar','vtype':'plot', 'win': 'lr', 'layout': {'windows': ['Learning_Rate_G', 'Learning_Rate_D'], 'id': 0}},
'Learning_Rate_D':{'dtype':'scalar','vtype':'plot', 'win': 'lr', 'layout': {'windows': ['Learning_Rate_G', 'Learning_Rate_D'], 'id': 1}},
'Real': {'dtype': output_dtype, 'vtype': output_vtype, 'win': 'real'}
}
for i in range(self.nranks-1):
self.params_visualizer_train['Loss_G{}'.format(i)] = {'dtype':'scalar','vtype':'plot', 'win': 'loss_gan', 'layout': {'windows': ['Loss_D0'] + G_loss_items, 'id': i+1}}
self.params_visualizer_train['Fake_{}'.format(i+1)] = {'dtype': output_dtype, 'vtype': output_vtype, 'win': 'fake_{}'.format(i)}
self.visualizer_train.register(self.params_visualizer_train)
# display training progress
self.print_train = '[%d/%d][%d/%d] '
for item in self.params_loss_train:
self.print_train = self.print_train + item + " %.3f "
self.giterations = 0
self.d_iter_init = args.d_iter
self.d_iter = self.d_iter_init
self.g_iter_init = args.g_iter
self.g_iter = self.g_iter_init
print('Discriminator:', self.modelD)
print('Generator:', self.modelG[0])
print('Encoder:', self.Encoder)
# define a zero tensor
self.t_zero = torch.zeros(1)
self.add_noise = args.add_noise
self.noise_var = args.noise_var
def initialize_optimizer(self, model, lr, optim_method='RMSprop', weight_decay=None):
if weight_decay is None:
weight_decay = self.weight_decay
if optim_method == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=lr, betas=(self.adam_beta1, self.adam_beta2), weight_decay=weight_decay)
elif optim_method == 'RMSprop':
optimizer = optim.RMSprop(model.parameters(), lr=lr, momentum=self.momentum, weight_decay=weight_decay)
elif optim_method == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=self.momentum, weight_decay=weight_decay)
else:
raise(Exception("Unknown Optimization Method"))
return optimizer
def model_train(self):
self.modelD.train()
for i in range(self.nranks-1):
self.modelG[i].train()
self.Encoder.train()
def train(self, epoch, dataloader):
self.monitor_train.reset()
data_iter = iter(dataloader)
self.len_dataset = int(len(dataloader) * self.dataset_fraction)
if epoch == 0:
print("Length of Dataset: {}".format(self.len_dataset))
############################
# Train GAN
############################
i = 0
while i < self.len_dataset:
############################
# Update Discriminator Network
############################
self.modelD.train()
d_iterations = self.d_iter
j=0
lossD = 0
lossG = 0
while j < d_iterations and i < self.len_dataset:
lossG = 0
j += 1
i += 1
input = data_iter.next()[0].to(self.device)
batch_size = input.size(0)
self.modelD.zero_grad()
for k in range(self.nranks-1):
self.modelG[k].zero_grad()
# train with real
if self.add_noise:
self.epsilon.data.resize_(input.size()).normal_(0, self.noise_var)
dis_input = input + self.epsilon
out_D = self.modelD(dis_input)
else:
out_D = self.modelD(input)
loss_real = self.logits_loss(out_D, self.target_real[:batch_size])
logits_D = self.sigmoid(out_D)
acc_real = 100*self.logits_eval(logits_D, self.target_real[:batch_size])
# train with fake from G1
self.epsilon.data.resize_(batch_size, self.nz).normal_(0, 1)
latents = self.epsilon
while(len(latents.size()) < len(input.size())):
latents = latents.unsqueeze(-1)
loss_fake = 0
for k in range(self.nranks-1):
fake = self.modelG[k](latents).detach()
if self.add_noise:
self.epsilon.data.resize_(input.size()).normal_(0, self.noise_var)
dis_input = fake + self.epsilon
out_fake = self.modelD(dis_input)
else:
out_fake = self.modelD(fake)
loss_fake += self.logits_loss(out_fake, self.target_fake[k,:batch_size])
logits_fake = self.sigmoid(out_fake)
acc_fake = 100*self.logits_eval(logits_fake, self.target_fake[self.nranks-2,:batch_size])
net_error = loss_real + loss_fake
net_error.backward()
self.optimizerD.step()
lossD = net_error.item()
############################
# Update Generator Network
############################
j = 0
while j < self.g_iter and i < self.len_dataset:
j += 1
# self.modelD.eval()
for k in range(self.nranks-1):
self.modelG[k].zero_grad()
self.modelD.zero_grad()
fakes = []
losses_G = []
for k in range(self.nranks-1):
fakes.append(self.modelG[k](latents))
if self.add_noise:
self.epsilon.data.resize_(input.size()).normal_(0, self.noise_var)
dis_input = fakes[k] + self.epsilon
out_G = self.modelD(dis_input)
else:
out_G = self.modelD(fakes[k])
losses_G.append(self.logits_loss(out_G, self.target_real[:batch_size]))
losses_G[k].backward()
self.optimizerG[k].step()
self.giterations += 1
# Bookkeeping
losses_train = {}
losses_train['Loss_D0'] = net_error.item()
for k in range(self.nranks-1):
losses_train['Loss_G{}'.format(k)] = losses_G[k].item()
losses_train['Acc_Real'] = acc_real
losses_train['Acc_Fake'] = acc_fake
self.monitor_train.update(losses_train, batch_size)
# losses_G = [loss.item() for loss in losses_G]
print_string = '[{}/{}][{}/{}] Loss_D0: {:.3f} ' + ''.join(['Loss_G{}: {{:.3f}} '.format(k) for k in range(self.nranks-1)]) + 'Acc_Real {:.1f} Acc_Fake {:.1f}'
print_outputs = [epoch, self.nepochs, i, self.len_dataset, net_error.item()] + [loss.item() for loss in losses_G] + [acc_real, acc_fake]
print(print_string.format(*print_outputs))
if i % self.plot_update_interval == 0:
losses_train['Learning_Rate_G'] = self.optimizerG[0].param_groups[0]['lr']
losses_train['Learning_Rate_D'] = self.optimizerD.param_groups[0]['lr']
losses_train['Real'] = input.detach().cpu()
for k in range(self.nranks-1):
losses_train['Fake_{}'.format(k+1)] = fakes[k].detach().cpu()
self.visualizer_train.update(losses_train)
if i % 250 == 0 or i == self.len_dataset:
try:
fake_normal_z = self.modelG[0](self.fixed_noise)
fake_encoder_z = fake
if len(input.size()) < 3:
fig = plt.figure()
plt.hist(input.squeeze().cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_real.png".format(self.save_path, stage, i), dpi=fig.dpi)
fig = plt.figure()
plt.hist(fake_encoder_z.squeeze().data.cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_fake_enc.png".format(self.save_path, stage, i), dpi=fig.dpi)
fig = plt.figure()
plt.hist(fake_normal_z.squeeze().data.cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_fake_norm.png".format(self.save_path, stage, i), dpi=fig.dpi)
else:
vutils.save_image(input, '%s/real_samples.png' % self.save_path, normalize=True)
for k in range(self.nranks-1):
vutils.save_image(fakes[k], '%s/fakes_epoch_%03d_rank_%d.png' % (self.save_path, epoch, k+1), normalize=True)
except Exception as e:
print(e)
try:
loss = self.monitor_train.getvalues()
self.log_loss_train.update(loss)
except Exception as e:
print("Error while logging loss")
print(e)
def test(self, stage, epoch, dataloader):
self.monitor_test.reset()
data_iter = iter(dataloader)
# switch to eval mode
# self.modelG[0].eval()
self.modelG[0].zero_grad()
# self.modelG[1].eval()
self.modelG[1].zero_grad()
# self.modelD[0].eval()
self.modelD[0].zero_grad()
# self.modelD[1].eval()
self.modelD[1].zero_grad()
# self.Encoder.eval()
self.Encoder.zero_grad()
self.t_zero = Variable(torch.zeros(1))
epoch_score_D0 = torch.Tensor([]).cuda()
epoch_score_D0_G0 = torch.Tensor([]).cuda()
epoch_score_D0_G1 = torch.Tensor([]).cuda()
epoch_ssim_score = 0.0
epoch_psnr_score = 0.0
epoch_disc_acc = 0.0
num_batches = len(dataloader)
i = 0
while i < len(dataloader):
############################
# Evaluate Network
############################
acc = 0.0
# Get real data
input = data_iter.next()[0]
i += 1
batch_size = input.size(0)
self.test_input.data.resize_(input.size()).copy_(input)
# Generate fake data
self.epsilon.data.resize_(batch_size, self.nz).normal_(0, 1)
noise_mu, noise_logvar = self.Encoder(self.test_input)
noise_sigma = torch.exp(torch.mul(noise_logvar, 0.5))
latents = noise_mu + torch.mul(noise_sigma, self.epsilon)
while(len(latents.size()) < len(self.test_input.size())):
latents = latents.unsqueeze(-1)
fake_G0 = self.modelG[0](latents)
fake_G1 = self.modelG[1](latents)
score_D0 = self.modelD[0](self.test_input, self.extra_layer, self.extra_layer_gamma)
score_D0_G0 = self.modelD[0](fake_G0, self.extra_layer, self.extra_layer_gamma)
score_D0_G1 = self.modelD[0](fake_G1, self.extra_layer, self.extra_layer_gamma)
ssim_score, psnr_score = 0.0, 0.0
data_range = input.max() - input.min()
acc += torch.sum((score_D0 > 0).float())
acc += torch.sum((score_D0_G0 <= 0).float())
disc_acc = float(acc)*50/batch_size
if self.args.net_type != 'gmm':
compare_real = input.permute(0,2,3,1)
compare_fake = fake_G0.permute(0,2,3,1)
for j in range(batch_size):
ssim_score += compare_ssim(compare_real[j,...].cpu().numpy(), compare_fake[j,...].data.cpu().numpy(), data_range=data_range, multichannel=True)
psnr_score += compare_psnr(compare_real[j,...].cpu().numpy(), compare_fake[j,...].data.cpu().numpy(), data_range=data_range)
epoch_score_D0 = torch.cat((epoch_score_D0, score_D0.data))
epoch_score_D0_G0 = torch.cat((epoch_score_D0_G0, score_D0_G0.data))
epoch_score_D0_G1 = torch.cat((epoch_score_D0_G1, score_D0_G1.data))
epoch_ssim_score += ssim_score/batch_size
epoch_psnr_score += psnr_score/batch_size
epoch_disc_acc += disc_acc
# Bookkeeping
test_scores = {}
test_scores['Test_Score_D0'] = score_D0.median().item()
test_scores['Test_Score_D0_G0'] = score_D0_G0.median().item()
test_scores['Test_Score_D0_G1'] = score_D0_G1.median().item()
test_scores['SSIM'] = ssim_score/batch_size
test_scores['PSNR'] = psnr_score/batch_size
test_scores['Test_Disc_Acc'] = disc_acc
self.monitor_test.update(test_scores, batch_size)
print('Test: [%d/%d][%d/%d] Score_D0: %.3f Score_D0_G0: %.3f Score_D0_G1: %.3f SSIM: %.3f PSNR: %.3f Disc_Acc: %.3f'
% (epoch, self.stage_epochs[stage], i, len(dataloader), score_D0.median().item(), score_D0_G0.median().item(), score_D0_G1.median().item(), ssim_score/batch_size, psnr_score/batch_size, disc_acc))
# if (i % int(len(dataloader)*0.25)) == 0:
# test_scores['Test_Real'] = self.test_input.data.cpu()
# test_scores['Test_Fakes_Encoder'] = fake_G0.data.cpu()
# self.visualizer_test.update(test_scores)
if i == len(dataloader)-2:
try:
fake_encoder_z = fake_G0
if len(self.input.size()) < 3:
fig = plt.figure()
plt.hist(input.squeeze().cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_real.png".format(self.save_path, stage, i), dpi=fig.dpi)
fig = plt.figure()
plt.hist(fake_encoder_z.squeeze().data.cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_fake_enc.png".format(self.save_path, stage, i), dpi=fig.dpi)
fig = plt.figure()
plt.hist(fake_normal_z.squeeze().data.cpu().numpy(), bins=60)
fig.savefig("{}/stage_{}_epoch_{}_fake_norm.png".format(self.save_path, stage, i), dpi=fig.dpi)
else:
vutils.save_image(fake_encoder_z.data, '%s/val_fake_samples_stage_%03d_encoder_z.png' % (self.save_path, stage), normalize=True)
vutils.save_image(input, '%s/val_real_samples.png' % self.save_path, normalize=True)
except Exception as e:
print(e)
avg_mean_scores_D0 = epoch_score_D0.median()
avg_mean_scores_D0_G0 = epoch_score_D0_G0.median()
avg_mean_scores_D0_G1 = epoch_score_D0_G1.median()
test_scores = {}
test_scores['Test_Score_D0'] = avg_mean_scores_D0
test_scores['Test_Score_D0_G0'] = avg_mean_scores_D0_G0
test_scores['Test_Score_D0_G1'] = avg_mean_scores_D0_G1
test_scores['SSIM'] = epoch_ssim_score/(num_batches)
test_scores['PSNR'] = epoch_psnr_score/(num_batches)
test_scores['Test_Disc_Acc'] = epoch_disc_acc / (num_batches)
test_scores['Test_Real'] = self.test_input.data.cpu()
test_scores['Test_Fakes_Encoder'] = fake_G0.data.cpu()
self.visualizer_test.update(test_scores)
# Check for Discriminator Saturation
if avg_mean_scores_D0_G0 > avg_mean_scores_D0 - (avg_mean_scores_D0 - avg_mean_scores_D0_G1)/4:
self.update_opt_flag = True
else:
self.update_opt_flag = False
# if self.gp and stage == 1:
# self.margin = np.percentile(epoch_score_D0.cpu().numpy(), 50) - np.percentile(epoch_score_D0_G0.cpu().numpy(), 50)
try:
loss = self.monitor_test.getvalues()
self.log_loss_test.update(loss)
except Exception as e:
print("Error while logging test loss")
print(e)
if stage == 1 and epoch_disc_acc / (num_batches) >= 80: #96
return True
else:
return False
def get_model_norm(self, model):
norm = torch.zeros(1)
param_list = list(model.main.parameters())
for l in param_list:
norm += torch.norm(l.data)
return norm
def update_opt_disc(self):
# Increase Discriminator Capacity When Generator Becomes Strong
if self.add_capacity:
self.extra_layer = min(self.extra_layer + 1, 5)
print("One layer added to the Discriminator")
elif self.add_clamp:
self.clamp_upper += 0.0002
self.clamp_lower -= 0.0002
self.lr_dis *= 1.003
self.lr_gen *= 1.003
if self.lr_dis > 10*self.lr_vae:
self.lr_dis = 10*self.lr_vae
if self.lr_gen > 10*self.lr_vae:
self.lr_gen = 10*self.lr_vae
self.optimizerD = self.initialize_optimizer(self.modelD[0], lr=self.lr_dis, optim_method=self.optim_method)
self.optimizerG = self.initialize_optimizer(self.modelG[0], lr=self.lr_gen, optim_method=self.optim_method)
print("Clamping increased to: Upper {} Lower {} LR_Disc {} LR_Gen {}".format(self.clamp_upper, self.clamp_lower, self.lr_dis, self.lr_gen))
def optimize_discriminator(self, stage, epoch, dataloader):
############################
# Optimize Discriminator Network
############################
data_iter = iter(dataloader)
self.len_dataset = int(len(dataloader) * self.dataset_fraction)
self.modelD[0].train()
self.modelG[0].eval()
i = 0
avg_mean_scores_D0 = 0.0
avg_mean_scores_D0_G0 = 0.0
avg_mean_scores_D0_G1 = 0.0
while i < self.len_dataset:
acc = 0.0
i += 1
# clamp parameters to a cube
if not self.gp:
for p in self.modelD[0].parameters():
p.data.clamp_(self.clamp_lower, self.clamp_upper)
input = data_iter.next()[0]
batch_size = input.size(0)
self.input.data.resize_(input.size()).copy_(input)
self.modelD[0].zero_grad()
self.modelG[0].zero_grad()
# train with real
if self.add_noise:
self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
dis_input = self.input + self.epsilon
scores_D0 = self.modelD[0](dis_input, self.extra_layer, self.extra_layer_gamma)
else:
scores_D0 = self.modelD[0](self.input, self.extra_layer, self.extra_layer_gamma)
# if self.add_noise:
# self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
# dis_input = self.input + self.epsilon
# scores_D1 = self.modelD[1](dis_input, 0)
# else:
# scores_D1 = self.modelD[1](self.input, 0)
acc += torch.sum((scores_D0 > self.acc_margin).float())
# train with fake
self.epsilon.data.resize_(batch_size, self.nz).normal_(0, 1)
noise_mu, noise_logvar = self.Encoder(self.input)
noise_sigma = torch.exp(torch.mul(noise_logvar, 0.5))
latents = noise_mu + torch.mul(noise_sigma, self.epsilon)
latents = latents.detach()
while(len(latents.size()) < len(input.size())):
latents = latents.unsqueeze(-1)
latents = latents.detach()
fake_G0 = self.modelG[0](latents).detach()
fake_G0.requires_grad = True
if self.add_noise:
self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
dis_input = fake_G0 + self.epsilon
scores_D0_G0 = self.modelD[0](dis_input, self.extra_layer, self.extra_layer_gamma)
else:
scores_D0_G0 = self.modelD[0](fake_G0, self.extra_layer, self.extra_layer_gamma)
fake_G1 = self.modelG[1](latents).detach()
# if self.add_noise:
# self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
# dis_input = fake_G1 + self.epsilon
# scores_D1_G1 = self.modelD[1](dis_input, 0)
# else:
# scores_D1_G1 = self.modelD[1](fake_G1, 0)
fake_G1.requires_grad = True
if self.add_noise:
self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
dis_input = fake_G1 + self.epsilon
scores_D0_G1 = self.modelD[0](dis_input, self.extra_layer, self.extra_layer_gamma)
else:
scores_D0_G1 = self.modelD[0](fake_G1, self.extra_layer, self.extra_layer_gamma)
acc += torch.sum((scores_D0_G0 <= 0).float())
disc_acc = float(acc)*50 / batch_size
# Compute loss and do backward()
# disc_abs_diff = torch.pow(scores_D0 - self.marker_high, 2).mean() + torch.pow(scores_D0_G1 - self.marker_low, 2).mean()
# disc_abs_diff = torch.norm(scores_D0 - self.marker_high) + torch.norm(scores_D0_G1 - self.marker_low)
# disc_abs_diff = torch.abs(scores_D0 - self.marker_high).mean() + torch.abs(scores_D0_G1 - self.marker_low).mean()
disc_abs_diff = self.criterion.hinge_loss(scores_D0, 1, self.marker_high)
disc_abs_diff += self.criterion.hinge_loss(scores_D0_G1, -1, -self.marker_low)
errD0 = self.criterion.rankerD([scores_D0, scores_D0_G0, scores_D0_G1])
net_error = 100*errD0 + self.disc_diff_weight*disc_abs_diff
if self.gp:
gradient_penalty = self.calc_gradient_penalty(self.input, fake_G0, batch_size)
net_error += gradient_penalty
else:
gradient_penalty = self.t_zero
try:
net_error.backward()
except Exception as e:
print(e)
self.optimizerD.step()
self.extra_layer_gamma = min(self.extra_layer_gamma + 1/(2*self.len_dataset), 1)
mean_scores_D0 = scores_D0.median().item()
mean_scores_D0_G0 = scores_D0_G0.median().item()
mean_scores_D0_G1 = scores_D0_G1.median().item()
# avg_mean_scores_D0 = (avg_mean_scores_D0*(i-1) + mean_scores_D0) / i
# avg_mean_scores_D0_G0 = (avg_mean_scores_D0_G0*(i-1) + mean_scores_D0_G0) / i
# avg_mean_scores_D0_G1 = (avg_mean_scores_D0_G1*(i-1) + mean_scores_D0_G1) / i
avg_mean_scores_D0 = avg_mean_scores_D0 * 0.2 + mean_scores_D0 * 0.8
avg_mean_scores_D0_G0 = avg_mean_scores_D0_G0 * 0.2 + mean_scores_D0_G0 * 0.8
avg_mean_scores_D0_G1 = avg_mean_scores_D0_G1 * 0.2 + mean_scores_D0_G1 * 0.8
if avg_mean_scores_D0_G0 < (avg_mean_scores_D0 + avg_mean_scores_D0_G1)/2 and disc_abs_diff.item() < 5:
return False
# Bookkeeping
losses_train = {}
losses_train['Loss_D0'] = errD0.item()
losses_train['Loss_G0'] = 0
losses_train['MSE'] = 0
losses_train['KLD'] = 0
losses_train['Corr_Loss'] = 0
losses_train['Mean'] = noise_mu.mean().item()
losses_train['Sigma'] = noise_sigma.mean().item()
losses_train['Score_D0'] = mean_scores_D0
losses_train['Score_D0_G0'] = mean_scores_D0_G0
losses_train['Score_D0_G1'] = mean_scores_D0_G1
losses_train['Score_D0_Normal_G0'] = self.t_zero.item()
losses_train['Score_D0_Normal_G1'] = self.t_zero.item()
losses_train['Disc_Diff'] = disc_abs_diff.item()
losses_train['Disc_Acc'] = disc_acc
losses_train['Clamp'] = self.clamp_upper
self.monitor_train.update(losses_train, batch_size)
print('Stage %d: [%d/%d][%d/%d] Loss_D: %.3f Loss_G: %.3f Score_D0: %.3f Score_D0_G0: %.3f Score_D0_G1: %.3f Disc_Diff %.3f Disc_Acc %.3f Extra_Gamma %.3f'
% (stage, epoch, self.stage_epochs[stage], i, self.len_dataset, errD0.item(), 0, mean_scores_D0, mean_scores_D0_G0, mean_scores_D0_G1, disc_abs_diff.item(), disc_acc, self.extra_layer_gamma))
if i % self.plot_update_interval == 0:
# Compute MSE
loss_mse = self.criterion.diff_loss(fake_G0, self.input, type=self.vae_loss_type)
losses_train['MSE'] = loss_mse.item()
losses_train['netD_norm_w'] = self.get_model_norm(self.modelD[0])[0]
losses_train['Learning_Rate_E'] = self.optimizerE.param_groups[0]['lr']
losses_train['Learning_Rate_G'] = self.optimizerG.param_groups[0]['lr']
losses_train['Learning_Rate_D'] = self.optimizerD.param_groups[0]['lr']
losses_train['Gradient_Penalty'] = gradient_penalty.item()
losses_train['Real'] = self.input.data.cpu()
losses_train['Fakes_Encoder'] = fake_G0.data.cpu()
losses_train['Fakes_Previous'] = fake_G1.data.cpu()
losses_train['Fakes_Current'] = self.modelG[0](self.fixed_noise).data.cpu()
# losses_train['Corr_Output'] = torch.zeros(fake_G0.size())
self.visualizer_train.update(losses_train)
if disc_abs_diff.item() < 4:
self.disc_diff_weight = self.disc_diff_weight_init/1000
elif disc_abs_diff.item() < 10:
self.disc_diff_weight = self.disc_diff_weight_init/10
else:
self.disc_diff_weight = self.disc_diff_weight_init
print('Stage %d: [%d/%d] Avg_Scores_D0 %.3f Avg_Scores_D0_G0 %.3f Avg_Scores_D0_G1 %.3f' % (stage, epoch, self.stage_epochs[stage], avg_mean_scores_D0, avg_mean_scores_D0_G0, avg_mean_scores_D0_G1))
return True
def compute_markers(self, dataloader):
data_iter = iter(dataloader)
self.len_dataset = int(len(dataloader) * self.dataset_fraction)
# self.modelD[0].eval()
# self.modelG[0].eval()
i = 0
all_scores_D1 = torch.Tensor([]).cuda()
all_scores_D1_G1 = torch.Tensor([]).cuda()
while i < self.len_dataset:
i += 1
input = data_iter.next()[0]
batch_size = input.size(0)
self.input.data.resize_(input.size()).copy_(input)
if self.add_noise:
self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
dis_input = self.input + self.epsilon
scores_D1 = self.modelD[1](dis_input, 0)
else:
scores_D1 = self.modelD[1](self.input, 0)
# train with fake
self.epsilon.data.resize_(batch_size, self.nz).normal_(0, 1)
noise_mu, noise_logvar = self.Encoder(self.input)
noise_sigma = torch.exp(torch.mul(noise_logvar, 0.5))
latents = noise_mu + torch.mul(noise_sigma, self.epsilon)
latents = latents.detach()
while(len(latents.size()) < len(input.size())):
latents = latents.unsqueeze(-1)
latents = latents.detach()
fake_G1 = self.modelG[1](latents).detach()
if self.add_noise:
self.epsilon.data.resize_(self.input.size()).normal_(0, self.noise_var)
dis_input = fake_G1 + self.epsilon
scores_D1_G1 = self.modelD[1](dis_input, 0)
else:
scores_D1_G1 = self.modelD[1](fake_G1, 0)
all_scores_D1 = torch.cat((all_scores_D1, scores_D1.data), dim=0)
all_scores_D1_G1 = torch.cat((all_scores_D1_G1, scores_D1_G1.data), dim=0)
return all_scores_D1.median(), all_scores_D1_G1.median()