-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_test.py
41 lines (33 loc) · 1.09 KB
/
model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import os
from unet import get_unet
from hussam_data import getData as gd
from matplotlib import pyplot as plt
import keras
def save(data, i, path):
data = data.astype('float32')
img = plt.imshow(data, interpolation='nearest')
img.set_cmap('gray')
plt.axis('off')
plt.savefig(path + str(i) + ".png", bbox_inches='tight')
def test(start, video, tag):
md = get_unet()
md.load_weights('ynet_single_video.hdf5')
h, hy = gd(start = start, end = start + 10, main_dir='../data/data', video=video)
hp = md.predict(h)
if not os.path.exists(tag):
os.makedirs(tag)
i = start
for p, g in zip(hp, hy):
save(p.reshape((224, 224)), i, tag)
save(g.reshape((224, 224)), i, tag+'gt')
i += 1
print("Done")
parent = 'out_multi_video'
test(1, 1, parent + '/training_data/')
test(100, 1, parent +'/similar_training_data/')
test(1, 2, parent +'/traingin_data2/')
test(1, 4, parent +'/traingin_data3/')
test(1, 6, parent +'/traingin_data4/')
test(1, 10, parent +'/test2/')
test(1, 22, parent +'/test3/')
test(1, 42, parent +'/test4/')