-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
548 lines (468 loc) · 24.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import os
import re
import time
import json
import torch
import argparse
import datetime
import numpy as np
from pathlib import Path
from libauc import losses
from torchvision import models
from collections import OrderedDict
import torch.backends.cudnn as cudnn
from apex.optimizers import FusedAdam
from torch.utils.tensorboard import SummaryWriter
from timm.models import create_model
from timm.models.layers import trunc_normal_
from timm.data.mixup import Mixup
import timm.optim.optim_factory as optim_factory
import utils.lr_decay as lrd
import utils.misc as misc
from utils.lars import LARS
from utils import build_dataset_chest_xray, \
interpolate_pos_embed, RASampler, NativeScaler
from models import models_eva, models_vit
from engines import train_one_epoch, evaluate_chestxray
def get_args_parser():
parser = argparse.ArgumentParser('EVA-X fine-tuning for image classification', add_help=False)
parser.add_argument('--batch_size', default=64, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--use_checkpoint', action='store_true', default=False)
parser.add_argument('--freeze_backbone', action='store_true', default=False)
parser.add_argument('--partial_freeze', default=0, type=int)
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT',
help='Drop path rate (default: 0.1)')
# linear probe
parser.add_argument('--linear_probe', action='store_true')
# Optimizer parameters
parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM',
help='Clip gradient norm (default: None, no clipping)')
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1e-3, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--layer_decay', type=float, default=0.75,
help='layer-wise lr decay from ELECTRA/BEiT')
parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR')
# Augmentation parameters
parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT',
help='Color jitter factor (enabled only when not using Auto/RandAug)')
parser.add_argument('--aa', type=str, default=None, metavar='NAME',
help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'),
parser.add_argument('--smoothing', type=float, default=0.1,
help='Label smoothing (default: 0.1)')
# * Random Erase params
parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT',
help='Random erase prob (default: 0.25)')
parser.add_argument('--remode', type=str, default='pixel',
help='Random erase mode (default: "pixel")')
parser.add_argument('--recount', type=int, default=1,
help='Random erase count (default: 1)')
parser.add_argument('--resplit', action='store_true', default=False,
help='Do not random erase first (clean) augmentation split')
# * Mixup params
parser.add_argument('--mixup', type=float, default=0,
help='mixup alpha, mixup enabled if > 0.')
parser.add_argument('--cutmix', type=float, default=0,
help='cutmix alpha, cutmix enabled if > 0.')
parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None,
help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)')
parser.add_argument('--mixup_prob', type=float, default=1.0,
help='Probability of performing mixup or cutmix when either/both is enabled')
parser.add_argument('--mixup_switch_prob', type=float, default=0.5,
help='Probability of switching to cutmix when both mixup and cutmix enabled')
parser.add_argument('--mixup_mode', type=str, default='batch',
help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--model_key', default='model|module', type=str)
parser.add_argument('--model_prefix', default='', type=str)
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=True)
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
help='Use class token instead of global pool for classification')
parser.add_argument('--stop_grad_conv1', action='store_true')
# Dataset parameters
parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_dir',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument("--train_list", default=None, type=str, help="file for train list")
parser.add_argument("--val_list", default=None, type=str, help="file for val list")
parser.add_argument("--test_list", default=None, type=str, help="file for test list")
parser.add_argument('--eval_interval', default=10, type=int)
parser.add_argument('--fixed_lr', action='store_true', default=False)
parser.add_argument('--vit_dropout_rate', type=float, default=0,
help='Dropout rate for ViT blocks (default: 0.0)')
parser.add_argument('--attn_drop_rate', type=float, default=0.0, metavar='PCT',
help='Attention dropout rate (default: 0.)')
parser.add_argument('--use_mean_pooling', action='store_true')
parser.add_argument("--build_timm_transform", action='store_true', default=False)
parser.add_argument("--aug_strategy", default='default', type=str, help="strategy for data augmentation")
parser.add_argument("--dataset", default='chestxray', type=str)
parser.add_argument('--repeated-aug', action='store_true', default=False)
parser.add_argument("--optimizer", default='adamw', type=str)
parser.add_argument('--ThreeAugment', action='store_true') # 3augment
parser.add_argument('--src', action='store_true') # simple random crop
parser.add_argument('--loss_func', default=None, type=str)
parser.add_argument("--norm_stats", default=None, type=str)
parser.add_argument("--checkpoint_type", default=None, type=str)
parser.add_argument("--data_pct", default=1.0, type=float)
# use_smooth_label
parser.add_argument('--use_smooth_label', action='store_true', default=False)
# find unused parameters
parser.add_argument('--find_unused_parameters', action='store_true', default=False)
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
cudnn.deterministic = True
dataset_train = build_dataset_chest_xray(split='train', args=args)
dataset_test = build_dataset_chest_xray(split='test', args=args)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
if args.repeated_aug:
sampler_train = RASampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
else:
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_test) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_test = torch.utils.data.DistributedSampler(
dataset_test, num_replicas=num_tasks, rank=global_rank, shuffle=True)
else:
sampler_test = torch.utils.data.SequentialSampler(dataset_test)
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, sampler=sampler_test,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
print("Mixup is activated!")
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=args.nb_classes)
if 'vit' in args.model:
model = models_vit.__dict__[args.model](
img_size=args.input_size,
num_classes=args.nb_classes,
drop_rate=args.vit_dropout_rate,
drop_path_rate=args.drop_path,
global_pool=args.global_pool,
)
elif 'resnet' in args.model:
model = models.__dict__[args.model](pretrained=False)
# Modify the number of classes
num_classes = args.nb_classes # Replace with the desired number of classes
in_features = model.fc.in_features
model.fc = torch.nn.Linear(in_features, num_classes)
elif 'densenet' in args.model or 'resnet' in args.model:
model = models.__dict__[args.model](num_classes=args.nb_classes)
elif 'eva' in args.model:
model = create_model(
args.model,
pretrained=False,
img_size=args.input_size,
num_classes=args.nb_classes,
drop_rate=args.vit_dropout_rate,
drop_path_rate=args.drop_path,
attn_drop_rate=args.attn_drop_rate,
drop_block_rate=None,
use_mean_pooling=args.use_mean_pooling,
use_checkpoint=args.use_checkpoint,
stop_grad_conv1=args.stop_grad_conv1,
)
else:
raise NotImplementedError
# Save args as a dictionary in save_dir
save_dir = args.output_dir + '/args.json'
args_dict = vars(args)
with open(save_dir, 'w') as fp:
json.dump(args_dict, fp, indent=4)
if args.finetune and not args.eval:
if 'vit' in args.model:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
if 'mgca' in args.finetune:
checkpoint_model = checkpoint['state_dict']
new_state_dict = OrderedDict()
for k, v in checkpoint_model.items():
if 'img_encoder_q.model.' in k:
new_state_dict[k.replace('img_encoder_q.model.', '')] = v
checkpoint_model = new_state_dict
else:
checkpoint_model = checkpoint['model']
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
if args.global_pool:
for k in ['fc_norm.weight', 'fc_norm.bias']:
try:
del checkpoint_model[k]
except:
pass
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
trunc_normal_(model.head.weight, std=2e-5)
elif 'densenet' in args.model or 'resnet' in args.model:
checkpoint = torch.load(args.finetune, map_location='cpu')
print("Load pre-trained checkpoint from: %s" % args.finetune)
if 'state_dict' in checkpoint.keys():
checkpoint_model = checkpoint['state_dict']
elif 'model' in checkpoint.keys():
checkpoint_model = checkpoint['model']
else:
checkpoint_model = checkpoint
if args.checkpoint_type == 'smp_encoder':
state_dict = checkpoint_model
new_state_dict = OrderedDict()
for key, value in state_dict.items():
if 'model.encoder.' in key:
new_key = key.replace('model.encoder.', '')
new_state_dict[new_key] = value
checkpoint_model = new_state_dict
elif args.checkpoint_type == 'torchvision_dn121':
new_state_dict = OrderedDict()
for key, value in checkpoint_model.items():
if 'norm' in key:
new_key = re.sub(r'norm.(\d+)', r'norm\1', key)
new_state_dict[new_key] = value
# print(key, 'to', new_key)
elif 'conv' in key:
new_key = re.sub(r'conv.(\d+)', r'conv\1', key)
new_state_dict[new_key] = value
# print(key, 'to', new_key)
checkpoint_model = new_state_dict
if "fc.weight" in checkpoint_model.keys():
checkpoint_model.pop('fc.weight')
if "fc.bias" in checkpoint_model.keys():
checkpoint_model.pop('fc.bias')
if "classifier.weight" in checkpoint_model.keys():
checkpoint_model.pop("classifier.weight")
if "classifier.bias" in checkpoint_model.keys():
checkpoint_model.pop("classifier.bias")
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
# initialize eva model (advanced vits)
elif 'eva' in args.model:
if args.finetune.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.finetune, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.finetune, map_location='cpu')
from utils import load_weights_for_eva
model = load_weights_for_eva(model, checkpoint, args)
if args.freeze_backbone or args.linear_probe:
for _, p in model.named_parameters():
p.requires_grad = False
for _, p in model.head.named_parameters():
p.requires_grad = True
if args.freeze_backbone:
try:
for _, p in model.fc_norm.named_parameters():
p.requires_grad = True
except:
print('no fc_norm, pass')
pass
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print("Model = %s" % str(model_without_ddp))
print('number of learnable params (M): %.2f' % (n_parameters / 1.e6))
if args.linear_probe:
# print list of learnable params
for name, param in model_without_ddp.named_parameters():
if param.requires_grad:
print(name)
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
args.lr = args.blr
print("lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=args.find_unused_parameters)
model_without_ddp = model.module
if 'vit' in args.model or 'eva' in args.model:
param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay,
no_weight_decay_list=model_without_ddp.no_weight_decay(),
layer_decay=args.layer_decay
)
else:
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
if args.optimizer == 'adamw':
optimizer = torch.optim.AdamW(param_groups, lr=args.lr)
elif args.optimizer == 'fusedlamb':
optimizer = FusedAdam(param_groups, lr=args.lr)
loss_scaler = NativeScaler()
if args.linear_probe:
optimizer = LARS(model_without_ddp.head.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print("optimizer = %s" % str(optimizer))
if args.dataset == 'chestxray':
criterion = torch.nn.BCEWithLogitsLoss()
elif args.dataset == 'covidx':
criterion = torch.nn.CrossEntropyLoss()
elif args.dataset == 'chexpert':
criterion = torch.nn.BCEWithLogitsLoss()
else:
raise NotImplementedError
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
model.module.load_state_dict(torch.load(args.finetune)['model'])
test_stats = evaluate_chestxray(data_loader_test, model, device, args)
print(f"Average AUC of the network on the test set images: {test_stats['auc_avg']:.4f}")
if args.dataset == 'covidx':
print(f"Accuracy of the network on the {len(dataset_test)} test images: {test_stats['acc1']:.1f}%")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
max_auc = 0.0
# Write experiment start time to log
if args.output_dir and misc.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write("Experiment start time: {}\n".format(datetime.datetime.now()))
# Write seed to log
if args.output_dir and misc.is_main_process():
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write("Seed: {}\n".format(seed))
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
args.clip_grad, mixup_fn,
log_writer=log_writer,
args=args
)
if args.output_dir and (epoch % args.eval_interval == 0 or epoch + 1 == args.epochs):
if args.dataset != 'chexpert':
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
else:
if epoch // 10 == 0:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
test_stats = evaluate_chestxray(data_loader_test, model, device, args)
# save best model
if test_stats['auc_avg'] >= max_auc:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch='best')
print(f"Average AUC on the test set images: {test_stats['auc_avg']:.4f}")
max_auc = max(max_auc, test_stats['auc_avg'])
print(f'Max Average AUC: {max_auc:.4f}', {max_auc})
if args.dataset == 'covidx':
print(f"Accuracy of the network on the {len(dataset_test)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.add_scalar('perf/auc_avg', test_stats['auc_avg'], epoch)
log_writer.add_scalar('perf/test_loss', test_stats['loss'], epoch)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if args.output_dir and misc.is_main_process() and epoch + 1 == args.epochs:
# save max auc
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write('max_auc='+str(max_auc) + "\n")
if args.dataset == 'covidx':
# save max accuracy
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write('max_accuracy='+str(max_accuracy) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)