-
Please follow classification installation.
-
Install amazing repo of pytorch-grad-cam
pip install grad-cam
Get finetuned weights from EVA-X classification. Here, we only use models finetuned on Chest X-Ray14 dataset.
Search for best thrd for final results. All of training codes are saved in get_cams.sh
.
python get_cams.py \
--model eva_x_small \
--ckpt /path/to/eva_x_small_patch16_merged520k_mim_cxr14_ft.pth \
--save-path ./output/eva_grad_cam \
--searching
Visualize Grad-CAMs
python get_cams.py \
--model eva_x_small \
--ckpt /path/to/eva_x_small_patch16_merged520k_mim_cxr14_ft.pth \
--save-path ./output/eva_grad_cam \
--thrd 0.4
The results will be saved into ./output
Methods | Architecture | AP25 | AP50 | mIoU | mAP | Checkpoint |
---|---|---|---|---|---|---|
MoCov2 | DenseNet121 | 10.98 | 1.42 | 8.18 | 6.20 | 🤗download |
Medical MAE | DenseNet121 | 8.33 | 2.13 | 6.90 | 5.23 | 🤗download |
BioViL | ResNet50 | 11.59 | 3.46 | 7.29 | 7.52 | 🤗download |
MGCA | ResNet50 | 7.22 | 2.34 | 5.00 | 4.78 | 🤗download |
MedKLIP | ResNet50 | 5.69 | 2.74 | 4.94 | 4.22 | 🤗download |
Medical MAE | ViT-S | 7.11 | 1.00 | 6.79 | 3.61 | official download |
EVA-X (Ours) | ViT-S | 14.74 | 2.95 | 9.18 | 8.84 | 🤗download |