-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
257 lines (235 loc) · 7.81 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import datetime
import os
import random
import numpy as np
import torch
from omegaconf import OmegaConf
# from torch.utils.tensorboard import SummaryWriter
from config.config import Config
from hexplane.dataloader import get_test_dataset, get_train_dataset
from hexplane.model import init_model
from hexplane.render.render import evaluation, evaluation_path, evaluation_hdr, evaluation_video, evaluation_mutiexp
from hexplane.render.trainer import Trainer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_dtype(torch.float32)
def render_test(cfg):
test_dataset = get_test_dataset(cfg, is_stack=True)
ndc_ray = test_dataset.ndc_ray
white_bg = test_dataset.white_bg
if not os.path.exists(cfg.systems.ckpt):
print("the ckpt path does not exists!!")
return
HexPlane = torch.load(cfg.systems.ckpt, map_location=device)
logfolder = os.path.dirname(cfg.systems.ckpt)
if cfg.render_train:
os.makedirs(f"{logfolder}/imgs_train_all", exist_ok=True)
train_dataset = get_train_dataset(cfg, is_stack=True)
evaluation(
train_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_train_all/",
prefix="train",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.render_test:
os.makedirs(f"{logfolder}/imgs_test_all", exist_ok=True)
evaluation(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_test_all/",
prefix="test",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.render_path:
os.makedirs(f"{logfolder}/imgs_path_all", exist_ok=True)
evaluation_path(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_path_all/",
prefix="test",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
def reconstruction(cfg):
if cfg.data.datasampler_type == "rays":
train_dataset = get_train_dataset(cfg, is_stack=False)
else:
train_dataset = get_train_dataset(cfg, is_stack=True)
test_dataset = get_test_dataset(cfg, is_stack=True)
ndc_ray = test_dataset.ndc_ray
white_bg = test_dataset.white_bg
near_far = test_dataset.near_far
if cfg.systems.add_timestamp:
logfolder = f'{cfg.systems.basedir}/{cfg.expname}{datetime.datetime.now().strftime("-%Y%m%d-%H%M%S")}'
else:
logfolder = f"{cfg.systems.basedir}/{cfg.expname}"
# init log file
os.makedirs(logfolder, exist_ok=True)
os.makedirs(f"{logfolder}/imgs_vis", exist_ok=True)
os.makedirs(f"{logfolder}/imgs_rgba", exist_ok=True)
os.makedirs(f"{logfolder}/rgba", exist_ok=True)
# summary_writer = SummaryWriter(os.path.join(logfolder, "logs"))
cfg_file = os.path.join(f"{logfolder}", "cfg.yaml")
with open(cfg_file, "w") as f:
OmegaConf.save(config=cfg, f=f)
# init model.
aabb = train_dataset.scene_bbox.to(device)
train_image = train_dataset.get_total_image()
test_image = test_dataset.get_total_image()
video_split_index = train_dataset.get_video_split_index()
total_image = [train_image+test_image, train_image, test_image]
print("total_image:",total_image)
HexPlane, reso_cur = init_model(cfg, aabb, near_far, device, total_image, video_split_index)
# init trainer.
trainer = Trainer(
HexPlane,
cfg,
reso_cur,
train_dataset,
test_dataset,
None,
logfolder,
device,
)
if cfg.systems.ckpt is None:
trainer.train()
torch.save(HexPlane, f"{logfolder}/{cfg.expname}.th")
# Render training viewpoints.
if cfg.render_train:
os.makedirs(f"{logfolder}/imgs_train_all", exist_ok=True)
train_dataset = get_train_dataset(cfg, is_stack=True)
evaluation(
train_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_train_all/",
prefix="train",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
# Render test viewpoints.
if cfg.render_test:
os.makedirs(f"{logfolder}/imgs_test_all", exist_ok=True)
evaluation(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_test_all/",
prefix="test",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
# Render validation viewpoints.
if cfg.render_path:
os.makedirs(f"{logfolder}/imgs_path_all", exist_ok=True)
evaluation_path(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_path_all/",
prefix="validation",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.render_hdr:
os.makedirs(f"{logfolder}/imgs_hdr_all", exist_ok=True)
evaluation_hdr(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_hdr_all/",
prefix="validation",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.render_video:
os.makedirs(f"{logfolder}/imgs_video", exist_ok=True)
evaluation_video(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_video/",
prefix="validation",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.render_mutiexp:
os.makedirs(f"{logfolder}/imgs_video", exist_ok=True)
evaluation_mutiexp(
test_dataset,
HexPlane,
cfg,
f"{logfolder}/imgs_mutiexp/",
prefix="validation",
N_vis=-1,
N_samples=-1,
ndc_ray=ndc_ray,
white_bg=white_bg,
device=device,
)
if cfg.draw_exp:
import matplotlib.pyplot as plt
# fig, ax = plt.subplots()
plt.rcParams["font.family"] = "Times New Roman"
plt.hist(HexPlane.get_render_exposures().detach().cpu().numpy(), bins=50)
plt.xlabel('Exposure',fontsize=18)
plt.ylabel('Images',fontsize=18)
plt.xticks(fontsize=18)
plt.yticks(fontsize=18)
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig(f"{logfolder}/{cfg.expname}.pdf",format='pdf')
plt.savefig(f"{logfolder}/{cfg.expname}.png",format='png')
if __name__ == "__main__":
# Load config file from base config, yaml and cli.
base_cfg = OmegaConf.structured(Config())
cli_cfg = OmegaConf.from_cli()
base_yaml_path = base_cfg.get("config", None)
yaml_path = cli_cfg.get("config", None)
if yaml_path is not None:
yaml_cfg = OmegaConf.load(yaml_path)
elif base_yaml_path is not None:
yaml_cfg = OmegaConf.load(base_yaml_path)
else:
yaml_cfg = OmegaConf.create()
cfg = OmegaConf.merge(base_cfg, yaml_cfg, cli_cfg) # merge configs
# Fix Random Seed for Reproducibility.
random.seed(cfg.systems.seed)
np.random.seed(cfg.systems.seed)
torch.manual_seed(cfg.systems.seed)
torch.cuda.manual_seed(cfg.systems.seed)
if cfg.render_only and (cfg.render_test or cfg.render_path):
# Inference only.
render_test(cfg)
else:
# Reconstruction and Inference.
reconstruction(cfg)