-
Notifications
You must be signed in to change notification settings - Fork 123
/
cocoval_predjson_generation.py
284 lines (242 loc) · 12.4 KB
/
cocoval_predjson_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import os
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from models import build_model as build_yolos_model
from datasets import build_dataset, get_coco_api_from_dataset
# from timm.scheduler import create_scheduler
# from new_models import build_model
from util.scheduler import create_scheduler
from datasets.coco_eval import CocoEvaluator
from util import box_ops
import torch.nn.functional as F
class MyPostProcess(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
@torch.no_grad()
def forward(self, outputs, target_sizes):
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = F.softmax(out_logits, -1)
scores, labels = prob[..., :-1].max(-1)
# convert to [x0, y0, x1, y1] format
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
boxes = box_ops.box_xyxy_to_cxcywh(out_bbox)
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
ones_h = torch.ones_like(img_h, device=img_h.device)
ones_w = torch.ones_like(img_w, device=img_w.device)
scale_fct = torch.stack([ones_w, ones_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{'scores': s, 'labels': l, 'boxes': b} for s, l, b in zip(scores, labels, boxes)]
return results
@torch.no_grad()
def get_val_json(model, criterion, postprocessors, data_loader, base_ds, device, output_dir, args):
model.eval()
criterion.eval()
# coco_evaluator = CocoEvaluator(base_ds, iou_types)
# coco_evaluator.coco_eval[iou_types[0]].params.iouThrs = [0, 0.1, 0.5, 0.75]
jdict = []
postprocess = MyPostProcess()
# import pdb;pdb.set_trace()
for samples, targets in data_loader:
samples = samples.to(device)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
outputs = model(samples)
orig_target_sizes = torch.stack([t["orig_size"] for t in targets], dim=0)
results = postprocess(outputs, orig_target_sizes)
imgs_h, imgs_w = orig_target_sizes.unbind(1)
res = {target['image_id'].item(): output for target, output in zip(targets, results)}
img_indx=0
for res_k, res_v in res.items():
image_id = int(res_k)
# for k, v in res_v.items():
scores = res_v['scores'].cpu().tolist()
labels = res_v['labels'].cpu().tolist()
boxes = res_v['boxes']
boxes = boxes.cpu().tolist() #normedcx, normedcy, w, h
for score, label, box in zip(scores, labels, boxes):
jdict.append({'image_id': image_id,
'category_id': int(label),
'bbox': [round(x, 3) for x in box],
'score': round(score, 5)})
output_json = os.path.join(output_dir, args.resume+ "-eval-"+str(args.eval_size)+"eval-pred.json")
with open(output_json, 'w') as f:
json.dump(jdict, f)
# for target, output in zip(targets, results):
# jdict
print("%s done" % output_json)
return
def get_args_parser():
parser = argparse.ArgumentParser('Set YOLOS', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--eval_size', default=800, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# scheduler
# Learning rate schedule parameters
parser.add_argument('--sched', default='warmupcos', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "step", options:"step", "warmupcos"')
## step
parser.add_argument('--lr_drop', default=100, type=int)
## warmupcosine
# parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
# help='learning rate noise on/off epoch percentages')
# parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
# help='learning rate noise limit percent (default: 0.67)')
# parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
# help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-7, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=0, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
# * model setting
parser.add_argument("--det_token_num", default=100, type=int,
help="Number of det token in the deit backbone")
parser.add_argument('--backbone_name', default='tiny', type=str,
help="Name of the deit backbone to use")
parser.add_argument('--pre_trained', default='',
help="set imagenet pretrained model path if not train yolos from scatch")
parser.add_argument('--init_pe_size', nargs='+', type=int,
help="init pe size (h,w)")
parser.add_argument('--mid_pe_size', nargs='+', type=int,
help="mid pe size (h,w)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
# dataset parameters
parser.add_argument('--dataset_file', default='coco')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
# print("git:\n {}\n".format(utils.get_sha()))
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# import pdb;pdb.set_trace()
model, criterion, postprocessors = build_yolos_model(args)
# model, criterion, postprocessors = build_model(args)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
def build_optimizer(model, args):
if hasattr(model.backbone, 'no_weight_decay'):
skip = model.backbone.no_weight_decay()
head = []
backbone_decay = []
backbone_no_decay = []
for name, param in model.named_parameters():
if "backbone" not in name and param.requires_grad:
head.append(param)
if "backbone" in name and param.requires_grad:
if len(param.shape) == 1 or name.endswith(".bias") or name.split('.')[-1] in skip:
backbone_no_decay.append(param)
else:
backbone_decay.append(param)
param_dicts = [
{"params": head},
{"params": backbone_no_decay, "weight_decay": 0., "lr": args.lr},
{"params": backbone_decay, "lr": args.lr},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
return optimizer
optimizer = build_optimizer(model_without_ddp, args)
lr_scheduler, _ = create_scheduler(args, optimizer)
dataset_train = build_dataset(image_set='train', args=args)
dataset_val = build_dataset(image_set='val', args=args)
# import pdb;pdb.set_trace()
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
base_ds = get_coco_api_from_dataset(dataset_val)
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
get_val_json(model, criterion, postprocessors, data_loader_val, base_ds, device, args.output_dir, args)
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('Get YOLOS pred json file', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)