-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·585 lines (509 loc) · 27.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torch.utils.data import ConcatDataset
import time
import random
import numpy as np
import itertools
import os
from utils import logger, rank_estimation, bool_string, decompose_weights, \
add_weight_decay, apply_fd, norm_calculator, param_counter, \
RESNET18_FR_BLOCKS_IDX_MAP
#import models
from lowrank_vgg import FullRankVGG19, PufferfishVGG19, LowRankVGG19Adapt
from resnet_cifar10 import *
from ptflops import get_model_complexity_info
best_acc = 0 # best test accuracy
CUDA_DEVICE_COUNT=0
def train(train_loader, model, criterion, optimizer, epoch, fd=True, coef=1e-4, fact_list=(), device=None):
model.train()
epoch_timer = 0
for batch_idx, (data, target) in enumerate(train_loader):
iter_start = torch.cuda.Event(enable_timing=True)
iter_end = torch.cuda.Event(enable_timing=True)
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
iter_start.record()
output = model(data)
loss = criterion(output, target)
loss.backward()
# add Frob. decay:
if fd:
apply_fd(model, weight_decay=coef, factor_list=fact_list)
optimizer.step()
iter_end.record()
torch.cuda.synchronize()
iter_comp_dur = float(iter_start.elapsed_time(iter_end))/1000.0
epoch_timer += iter_comp_dur
if batch_idx % 40 == 0:
logger.info('Train Epoch: {} [{}/{} ({:.0f}%)] Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
return epoch_timer
def validate(test_loader, model, criterion, epoch, args, device):
global best_acc
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
total += target.size(0)
assert total == len(test_loader.dataset)
acc = 100. * correct / len(test_loader.dataset)
test_loss /= len(test_loader.dataset)
logger.info('\nEpoch: {}, Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(epoch,
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
if not args.evaluate:
if acc > best_acc:
logger.info('###### Saving..')
state = {
'net': model.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/{}_seed{}_best.pth'.format(args.arch, args.seed))
best_acc = acc
return best_acc
def seed(seed):
# seed = 1234
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
#TODO: Do we need deterministic in cudnn ? Double check
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
logger.info("Seeded everything")
def main():
# Training settings
parser = argparse.ArgumentParser(description='Pufferfish-2 Cifar-10')
parser.add_argument('-a', '--arch', default='resnet18')
parser.add_argument('--dataset', type=str, default='cifar10',
help='which dataset to use.')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--seed', type=int, default=42,
help='the random seed to use in the experiment for reproducibility')
parser.add_argument('--test-batch-size', type=int, default=300, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train (default: 10)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
help='SGD momentum (default: 0.5)')
parser.add_argument('--weight-decay', type=float, default=1e-4,
help='weight decay coefficient.')
parser.add_argument('--full-rank-warmup', type=bool_string, default=True,
help='if or not to use full-rank warmup')
parser.add_argument('--fr-warmup-epoch', type=int, default=15,
help='number of full rank epochs to use')
parser.add_argument('-re', '--resume', default=False, type=bool_string,
help='wether or not to resume from a checkpoint.')
parser.add_argument('-eva', '--evaluate', type=bool_string, default=False,
help='wether or not to evaluate the model after loading the checkpoint.')
parser.add_argument('-fd', '--frob-decay', type=bool_string, default=True,
help='wether or not to enable Frobenius decay.')
parser.add_argument('--extra-bns', type=bool_string, default=True,
help='wether or not to enable the extra BNs.')
parser.add_argument('-rr', '--rank-ratio', default=4, type=int,
metavar='N', help='the rank factor that is going to use in the low rank models')
parser.add_argument('-cp', '--ckpt_path', type=str, default="./checkpoint/vgg19_best.pth",
help='path to the checkpoint to resume.')
parser.add_argument('--rank-est-metric', default='scaled-stable-rank', type=str,
help='we can do scaled-stable-rank or vanilla-stable-rank.')
# training mode
parser.add_argument('--mode', type=str, default='vanilla',
help='use full rank or low rank models')
# for large-batch training
parser.add_argument('--scale-factor', default=4, type=int,
help='the factor to scale the batch size.')
parser.add_argument('--lr-warmup-epochs', type=int, default=5,
help='num of epochs to warmup the learning rate for large-batch training.')
args = parser.parse_args()
if args.frob_decay and args.extra_bns:
raise ValueError(
"Can Enable Frob Decay and Extra BNs at the Same Time!!!"
)
torch.manual_seed(args.seed)
device = torch.device("cuda:{}".format(CUDA_DEVICE_COUNT) if torch.cuda.is_available() else "cpu")
logger.info("Benchmarking over device: {}".format(device))
logger.info("Args: {}".format(args))
if args.mode == "vanilla":
args.fr_warmup_epoch = args.epochs
# let's enable cudnn benchmark
seed(seed=args.seed)
milestone_epochs = [int(0.5*args.epochs), int(0.75*args.epochs)]
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#normalize
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# data prep for test set
transform_test = transforms.Compose([
transforms.ToTensor(),
#normalize
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# adjust dataset
if args.dataset == "cifar10":
data_obj = datasets.CIFAR10
_num_classes = 10
elif args.dataset == "cifar100":
data_obj = datasets.CIFAR100
_num_classes = 100
elif args.dataset == "svhn":
data_obj = datasets.SVHN
_num_classes = 10
else:
raise NotImplementedError("Unsupported Dataset ...")
# load training and test set here:
if args.dataset in ("cifar10", "cifar100"):
training_set = data_obj(root='./{}_data'.format(args.dataset), train=True,
download=True, transform=transform_train)
elif args.dataset == "svhn":
training_set = data_obj(root='./{}_data'.format(args.dataset), split="train",
download=True, transform=transform_train)
else:
raise NotImplementedError("Unsupported Dataset ...")
train_loader = torch.utils.data.DataLoader(training_set, batch_size=args.batch_size,
num_workers=4,
shuffle=True,
pin_memory=True)
if args.dataset in ("cifar10", "cifar100"):
testset = data_obj(root='./{}_data'.format(args.dataset), train=False,
download=True, transform=transform_test)
elif args.dataset == "svhn":
testset = data_obj(root='./{}_data'.format(args.dataset), split="test",
download=True, transform=transform_test)
else:
raise NotImplementedError("Unsupported Dataset ...")
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size,
num_workers=4,
shuffle=False,
pin_memory=True)
if args.arch == "resnet18":
name_layers_to_factorize = ("layer2.1.conv1", "layer2.1.conv2",
"layer3.0.conv1", "layer3.0.conv2",
"layer3.1.conv1", "layer3.1.conv2",
"layer4.0.conv1", "layer4.0.conv2",
"layer4.1.conv1", "layer4.1.conv2")
layers_to_factorize = [s + ".weight" for s in name_layers_to_factorize]
if args.mode == "vanilla":
pass
elif args.mode in ("lowrank", "baseline", "pufferfish"):
if args.mode == "lowrank":
model = None
elif args.mode == "baseline":
model = LowrankResNet18(rank_ratio=args.rank_ratio, num_fr_blocks=0, num_classes=_num_classes).to(device)
elif args.mode == "pufferfish":
model = PufferfishResNet18(num_classes=_num_classes).to(device)
else:
raise NotImplementedError("Unsupported training mode ...")
else:
raise NotImplementedError("unsupported mode ...")
vanilla_model = ResNet18(num_classes=_num_classes).to(device)
elif args.arch == "vgg19":
layers_to_factorize = [s + ".weight" for s in (
"block2.0", "block2.3", "block2.6", "block2.9",
"block3.0", "block3.3", "block3.6", "block3.9",
"block3.13", "block3.16", "block3.19", "block3.22",
)]
if args.mode == "vanilla":
pass
elif args.mode in ("lowrank", "baseline"):
model = None
elif args.mode == "pufferfish":
model = PufferfishVGG19(num_classes=_num_classes).to(device)
else:
raise NotImplementedError("unsupported mode ...")
vanilla_model = FullRankVGG19(num_classes=_num_classes).to(device)
else:
raise NotImplementedError("Unsupported network architecture ...")
est_rank_tracker = [[] for _ in range(len(layers_to_factorize))]
layer_stable_tracker = [False for _ in range(len(layers_to_factorize))]
with torch.cuda.device(CUDA_DEVICE_COUNT):
if args.mode in ("baseline", "pufferfish"):
lowrank_macs, lowrank_params = get_model_complexity_info(
model, (3, 32, 32), as_strings=True,
print_per_layer_stat=True, verbose=True
)
logger.info("============> Lowrank Model info: {}, num params: {}, Macs: {}".format(model, param_counter(model), lowrank_macs))
vanilla_macs, vanilla_params = get_model_complexity_info(
vanilla_model, (3, 32, 32), as_strings=True,
print_per_layer_stat=True, verbose=True
)
logger.info("============> Vanilla Model info: {}, num params: {}, Macs: {}".format(
vanilla_model, param_counter(vanilla_model), vanilla_macs))
criterion = nn.CrossEntropyLoss()
init_lr = args.lr
if args.resume:
logger.info('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.ckpt_path)
model.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
if args.evaluate:
validate(
test_loader=test_loader,
model=model,
criterion=criterion,
epoch=start_epoch,
args=args,
device=device)
exit()
if args.mode in ("baseline", "pufferfish"):
optimizer = optim.SGD(model.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=1e-4)
vanilla_parameters = add_weight_decay(vanilla_model, 1e-4)
weight_decay = 0.
vanilla_optimizer = torch.optim.SGD(vanilla_parameters, args.lr,
momentum=args.momentum,
weight_decay=weight_decay)
#vanilla_optimizer = torch.optim.SGD(vanilla_model.parameters(), args.lr,
# momentum=args.momentum,
# weight_decay=1e-4)
if args.mode == "lowrank":
est_rank_list, adjust_rank_scale, args.fr_warmup_epoch = rank_estimation(epoch=-1, net=vanilla_model,
est_rank_tracker=est_rank_tracker,
layers_to_factorize=layers_to_factorize,
layer_stable_tracker=layer_stable_tracker,
args=args)
logger.info("##### est rank list: {}, len rank list: {}".format(
est_rank_list,
len(est_rank_list)))
else:
est_rank_list, adjust_rank_scale, _ = rank_estimation(epoch=-1, net=vanilla_model,
est_rank_tracker=est_rank_tracker,
layers_to_factorize=layers_to_factorize,
layer_stable_tracker=layer_stable_tracker,
args=args)
running_stats = {"Comp-Time": 0.0,
"Best-Val-Acc": 0.0}
for epoch in range(0, args.epochs):
epoch_start = time.time()
# adjusting lr schedule
if epoch < milestone_epochs[0]:
if args.mode in ("baseline", "pufferfish", "lowrank"):
if epoch <= args.fr_warmup_epoch:
pass
elif epoch in range(args.fr_warmup_epoch + 1, args.fr_warmup_epoch + args.lr_warmup_epochs):
factor = 1.0 + (args.scale_factor - 1.0) *min((epoch-args.fr_warmup_epoch)/args.lr_warmup_epochs, 1.0)
for group in optimizer.param_groups:
group['lr'] = init_lr * factor
else:
for group in optimizer.param_groups:
group['lr'] = init_lr * args.scale_factor
for group in vanilla_optimizer.param_groups:
if epoch in range(args.lr_warmup_epochs):
factor = 1.0 + (args.scale_factor - 1.0) *min(epoch / args.lr_warmup_epochs, 1.0)
group['lr'] = init_lr * factor
else:
group['lr'] = init_lr * args.scale_factor
elif (epoch >= milestone_epochs[0] and epoch < milestone_epochs[1]):
if args.mode in ("baseline", "pufferfish", "lowrank"):
if epoch <= args.fr_warmup_epoch:
pass
else:
for group in optimizer.param_groups:
group['lr'] = init_lr * args.scale_factor / 10.0
for group in vanilla_optimizer.param_groups:
group['lr'] = init_lr * args.scale_factor / 10.0
elif epoch >= milestone_epochs[1]:
if args.mode in ("baseline", "pufferfish", "lowrank"):
if epoch <= args.fr_warmup_epoch:
pass
else:
for group in optimizer.param_groups:
group['lr'] = init_lr * args.scale_factor / 100.0
for group in vanilla_optimizer.param_groups:
group['lr'] = init_lr * args.scale_factor / 100.0
if args.mode in ("baseline", "pufferfish"):
if epoch < args.fr_warmup_epoch:
for group in vanilla_optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
elif epoch == args.fr_warmup_epoch:
pass
else:
for group in optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
elif args.mode == "lowrank":
if epoch < args.fr_warmup_epoch:
for group in vanilla_optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
elif epoch == args.fr_warmup_epoch:
pass
else:
for group in optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
elif args.mode == "vanilla":
for group in vanilla_optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
if args.full_rank_warmup and epoch in range(args.fr_warmup_epoch):
logger.info("Epoch: {}, Warmuping ...".format(epoch))
# support vanilla training
rank_est_start = torch.cuda.Event(enable_timing=True)
rank_est_end = torch.cuda.Event(enable_timing=True)
rank_est_start.record()
if args.mode == "lowrank":
est_rank_list, args.fr_warmup_epoch = rank_estimation(epoch=epoch, net=vanilla_model, adjust_rank_scale=adjust_rank_scale,
est_rank_tracker=est_rank_tracker,
layers_to_factorize=layers_to_factorize,
layer_stable_tracker=layer_stable_tracker,
args=args)
else:
est_rank_list, _ = rank_estimation(epoch=epoch, net=vanilla_model, adjust_rank_scale=adjust_rank_scale,
est_rank_tracker=est_rank_tracker,
layers_to_factorize=layers_to_factorize,
layer_stable_tracker=layer_stable_tracker,
args=args)
rank_est_end.record()
torch.cuda.synchronize()
rank_est_dur = float(rank_est_start.elapsed_time(rank_est_end))/1000.0
logger.info("#### Epoch: {}, Cost for Rank Est: {} ....".format(epoch, rank_est_dur))
if args.mode == "lowrank":
running_stats["Comp-Time"] += rank_est_dur
epoch_time = train(train_loader, vanilla_model, criterion, vanilla_optimizer, epoch, fd=False,
device=device)
elif args.full_rank_warmup and epoch == args.fr_warmup_epoch:
logger.info("Epoch: {}, swtiching to low rank model ...".format(epoch))
if args.mode == "lowrank":
est_rank_list, _ = rank_estimation(epoch=epoch, net=vanilla_model, adjust_rank_scale=adjust_rank_scale,
est_rank_tracker=est_rank_tracker,
layers_to_factorize=layers_to_factorize,
layer_stable_tracker=layer_stable_tracker,
args=args)
if args.arch == "resnet18":
model = LowrankResNet18Adapt(
rank_list=est_rank_list,
num_classes=_num_classes,
frob_decay=args.frob_decay,
extra_bns=args.extra_bns
).to(device)
elif args.arch == "vgg19":
model = LowRankVGG19Adapt(
rank_list=est_rank_list,
num_classes=_num_classes,
frob_decay=args.frob_decay,
extra_bns=args.extra_bns
).to(device)
else:
raise NotImplementedError("Unsupported network architecture ...")
decompose_start = torch.cuda.Event(enable_timing=True)
decompose_end = torch.cuda.Event(enable_timing=True)
decompose_start.record()
model = decompose_weights(model=vanilla_model,
low_rank_model=model,
rank_list=est_rank_list,
rank_ratio=None,
args=args)
decompose_end.record()
torch.cuda.synchronize()
decompose_dur = float(decompose_start.elapsed_time(decompose_end))/1000.0
logger.info("#### Cost for decomposing the weights: {} ....".format(decompose_dur))
logger.info("### The Adapt lowrank net: {}, {}".format(model, param_counter(model)))
with torch.cuda.device(CUDA_DEVICE_COUNT):
lowrank_macs, lowrank_params = get_model_complexity_info(model, (3, 32, 32), as_strings=True,
print_per_layer_stat=True, verbose=True)
logger.info("====> Adaptive Model info: num params: {}, Macs: {}".format(param_counter(model), lowrank_macs))
running_stats["Comp-Time"] += decompose_dur
else:
decompose_start = torch.cuda.Event(enable_timing=True)
decompose_end = torch.cuda.Event(enable_timing=True)
decompose_start.record()
model = decompose_weights(model=vanilla_model,
low_rank_model=model,
rank_list=None,
rank_ratio=args.rank_ratio,
args=args)
decompose_end.record()
torch.cuda.synchronize()
decompose_dur = float(decompose_start.elapsed_time(decompose_end))/1000.0
logger.info("#### Cost for decomposing the weights: {} ....".format(decompose_dur))
running_stats["Comp-Time"] += decompose_dur
if args.mode == "lowrank":
# we will need to generate skip list here and add FD manually
if args.arch == "resnet18":
skip_layer = set([s[0] + s[1] + ".weight" for s in itertools.product(
["layer2.1.conv1", "layer2.1.conv2",
"layer3.0.conv1", "layer3.0.conv2",
"layer3.1.conv1", "layer3.1.conv2",
"layer4.0.conv1", "layer4.0.conv2",
"layer4.1.conv1", "layer4.1.conv2"], ["_u", "_v"])])
elif args.arch == "vgg19":
skip_layer = set([s[0] + s[1] + ".weight" for s in itertools.product(
["conv{}".format(i) for i in range(5, 17)], ["_u", "_v"])])
else:
raise NotImplementedError("Unsupported network architecture ...")
if args.frob_decay:
parameters = add_weight_decay(model, 1e-4, skip_list=skip_layer)
else:
parameters = add_weight_decay(model, 1e-4)
else:
skip_layer = None
parameters = add_weight_decay(model, 1e-4)
weight_decay = 0.
optimizer = torch.optim.SGD(parameters, args.lr,
momentum=args.momentum,
weight_decay=weight_decay)
for group in optimizer.param_groups:
logger.info("### Epoch: {}, Current effective lr: {}".format(epoch, group['lr']))
break
epoch_time = train(train_loader, model, criterion, optimizer, epoch,
fd=args.frob_decay, coef=args.weight_decay, fact_list=skip_layer, device=device)
else:
logger.info("Epoch: {}, {} training ...".format(epoch, args.mode))
epoch_time = train(train_loader, model, criterion, optimizer, epoch,
fd=args.frob_decay, coef=args.weight_decay, fact_list=skip_layer, device=device)
running_stats["Comp-Time"] += epoch_time
epoch_end = time.time()
logger.info("####### Comp Time Cost for Epoch: {} is {}, os time: {}".format(
epoch, epoch_time, epoch_end - epoch_start))
# eval
if args.full_rank_warmup and epoch in range(args.fr_warmup_epoch):
best_acc = validate(
test_loader=test_loader,
model=vanilla_model,
criterion=criterion,
epoch=epoch,
args=args,
device=device)
else:
best_acc = validate(
test_loader=test_loader,
model=model,
criterion=criterion,
epoch=epoch,
args=args,
device=device)
running_stats["Best-Val-Acc"] = best_acc
for k, v in running_stats.items():
logger.info("{}: {}".format(k, v))
if __name__ == '__main__':
main()