-
Notifications
You must be signed in to change notification settings - Fork 12
/
streamlit.py
112 lines (95 loc) · 4.1 KB
/
streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import streamlit as st
from langchain.document_loaders import RecursiveUrlLoader
from langchain.document_transformers import Html2TextTransformer
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
from langchain.callbacks import StreamlitCallbackHandler
from langchain.agents import OpenAIFunctionsAgent, AgentExecutor
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.agents.openai_functions_agent.agent_token_buffer_memory import (
AgentTokenBufferMemory,
)
from langchain.chat_models import ChatOpenAI
from langchain.schema import SystemMessage, AIMessage, HumanMessage
from langchain.prompts import MessagesPlaceholder
from langsmith import Client
client = Client()
st.set_page_config(
page_title="ChatLangChain",
page_icon="🦜",
layout="wide",
initial_sidebar_state="collapsed",
)
"# Chat🦜🔗"
@st.cache_resource(ttl="1h")
def configure_retriever():
loader = RecursiveUrlLoader("https://docs.smith.langchain.com/")
raw_documents = loader.load()
docs = Html2TextTransformer().transform_documents(raw_documents)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(documents, embeddings)
return vectorstore.as_retriever(search_kwargs={"k": 4})
tool = create_retriever_tool(
configure_retriever(),
"search_langsmith_docs",
"Searches and returns documents regarding LangSmith. LangSmith is a platform for debugging, testing, evaluating, and monitoring LLM applications. You do not know anything about LangSmith, so if you are ever asked about LangSmith you should use this tool.",
)
tools = [tool]
llm = ChatOpenAI(temperature=0, streaming=True, model="gpt-4")
message = SystemMessage(
content=(
"You are a helpful chatbot who is tasked with answering questions about LangSmith. "
"Unless otherwise explicitly stated, it is probably fair to assume that questions are about LangSmith. "
"If there is any ambiguity, you probably assume they are about that."
)
)
prompt = OpenAIFunctionsAgent.create_prompt(
system_message=message,
extra_prompt_messages=[MessagesPlaceholder(variable_name="history")],
)
agent = OpenAIFunctionsAgent(llm=llm, tools=tools, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
return_intermediate_steps=True,
)
memory = AgentTokenBufferMemory(llm=llm)
starter_message = "Ask me anything about LangSmith!"
if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
st.session_state["messages"] = [AIMessage(content=starter_message)]
def send_feedback(run_id, score):
client.create_feedback(run_id, "user_score", score=score)
for msg in st.session_state.messages:
if isinstance(msg, AIMessage):
st.chat_message("assistant").write(msg.content)
elif isinstance(msg, HumanMessage):
st.chat_message("user").write(msg.content)
memory.chat_memory.add_message(msg)
if prompt := st.chat_input(placeholder=starter_message):
st.chat_message("user").write(prompt)
with st.chat_message("assistant"):
st_callback = StreamlitCallbackHandler(st.container())
response = agent_executor(
{"input": prompt, "history": st.session_state.messages},
callbacks=[st_callback],
include_run_info=True,
)
st.session_state.messages.append(AIMessage(content=response["output"]))
st.write(response["output"])
memory.save_context({"input": prompt}, response)
st.session_state["messages"] = memory.buffer
run_id = response["__run"].run_id
col_blank, col_text, col1, col2 = st.columns([10, 2, 1, 1])
with col_text:
st.text("Feedback:")
with col1:
st.button("👍", on_click=send_feedback, args=(run_id, 1))
with col2:
st.button("👎", on_click=send_feedback, args=(run_id, 0))