-
Notifications
You must be signed in to change notification settings - Fork 5
/
BargerPropagator.cc
334 lines (245 loc) · 9.28 KB
/
BargerPropagator.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#include "BargerPropagator.h"
BargerPropagator::BargerPropagator()
{
Earth = new EarthDensity( );
init();
}
BargerPropagator::BargerPropagator( bool k )
{
Earth = new EarthDensity( );
init();
}
BargerPropagator::~BargerPropagator( )
{
delete Earth;
}
BargerPropagator::BargerPropagator( const char * f )
{
Earth = new EarthDensity( f );
init();
}
void BargerPropagator::init()
{
kUseMassEigenstates = false;
//rad earth in [cm] /
REarth = Earth->GetEarthRadiuskm() * 1.0e5;
ProductionHeight = 0.0;
PathLength = 0.0;
// default is neutral matter
density_convert = 0.5;
kAntiMNSMatrix = false ;
kSuppressWarnings = false ;
kOneDominantMass = true ;
}
void BargerPropagator::propagate( int NuFlavor ){
int i,j;
int Layers;
double TransitionMatrix[3][3][2];
double TransitionProduct[3][3][2];
double TransitionTemp[3][3][2];
double RawInputPsi[3][2];
double OutputPsi[3][2];
if( ! kSuppressWarnings )
if(
( kAntiMNSMatrix && NuFlavor > 0) ||
(!kAntiMNSMatrix && NuFlavor < 0)
)
{
std::cout << " Warning BargerPropagator::propagate - " << std::endl;
std::cout << " Propagating neutrino flavor and MNS matrix definition differ :" << std::endl;
std::cout << " MNS Matrix was defined for : " << ( kAntiMNSMatrix ? " Nubar " : "Nu" )<< std::endl;
std::cout << " Propagation is for : " << ( NuFlavor < 0 ? " Nubar " : "Nu" )<< std::endl;
std::cout << " Please check your call to BargerPropagator::SetMNS() " << std::endl;
std::cout << " This message can be suppressed with a call to BargerPropagator::SuppressWarnings() " << std::endl;
exit(-1);
}
clear_complex_matrix( TransitionMatrix );
clear_complex_matrix( TransitionProduct );
clear_complex_matrix( TransitionTemp );
ClearProbabilities();
Earth->SetDensityProfile( CosineZenith, PathLength, ProductionHeight );
Layers = Earth->get_LayersTraversed( );
for ( i = 0; i < Layers ; i++ )
{
get_transition_matrix( NuFlavor,
Energy , // in GeV
Earth->get_DensityInLayer(i) * density_convert,
Earth->get_DistanceAcrossLayer(i)/1.0e5, // in km
TransitionMatrix, // Output transition matrix
0.0 // phase offset
);
if ( i == 0 )
copy_complex_matrix( TransitionMatrix , TransitionProduct );
if ( i >0 ){
clear_complex_matrix( TransitionTemp );
multiply_complex_matrix( TransitionMatrix, TransitionProduct, TransitionTemp );
copy_complex_matrix( TransitionTemp, TransitionProduct );
}//for other layers
}// end of layer loop
// loop on neutrino types
for ( i = 0 ; i < 3 ; i++ )
{
for ( j = 0 ; j < 3 ; j++ )
{ RawInputPsi[j][0] = 0.0; RawInputPsi[j][1] = 0.0; }
if( kUseMassEigenstates )
convert_from_mass_eigenstate( i+1, NuFlavor, RawInputPsi );
else
RawInputPsi[i][0] = 1.0;
multiply_complex_matvec( TransitionProduct, RawInputPsi, OutputPsi );
Probability[i][0] += OutputPsi[0][0] * OutputPsi[0][0] + OutputPsi[0][1]*OutputPsi[0][1];
Probability[i][1] += OutputPsi[1][0] * OutputPsi[1][0] + OutputPsi[1][1]*OutputPsi[1][1];
Probability[i][2] += OutputPsi[2][0] * OutputPsi[2][0] + OutputPsi[2][1]*OutputPsi[2][1];
}//end of neutrino loop
}
void BargerPropagator::ClearProbabilities()
{
for ( int i = 0 ; i < 3; i++ )
for ( int j = 0 ; j < 3 ; j++ )
Probability[i][j] = 0.0;
}
void BargerPropagator::SetMNS( double x12, double x13, double x23,
double m21, double mAtm, double delta,
double Energy_ , bool kSquared, int kNuType )
{
Energy = Energy_;
double sin12;
double sin13;
double sin23;
double lm32 = mAtm ;
// Dominant Mixing mode assumes the user
// simply changes the sign of the input atmospheric
// mixing to invert the hierarchy
// so the input for NH corresponds to m32
// and the input for IH corresponds to m31
if( kOneDominantMass )
{
// For the inverted Hierarchy, adjust the input
// by the solar mixing (should be positive)
// to feed the core libraries the correct value of m32
if( mAtm < 0.0 )
lm32 = mAtm - m21 ;
}
else
{
if( !kSuppressWarnings )
{
std::cout << " BargerPropagator::SetMNS - " << std::endl;
std::cout << " You have opted to specify the value of m23 by yourself. " << std::endl;
std::cout << " This means you must correct the value of m23 when switching " << std::endl;
std::cout << " between the mass hierarchy options. " << std::endl;
std::cout << " This message can be suppressed with BargerPropagator::SuppressWarnings()"<< std::endl;
}
}
//if xAB = sin( xAB )^2
if ( kSquared ){
sin12 = sqrt( x12 );
sin13 = sqrt( x13 );
sin23 = sqrt( x23 );
}
else
{
//if xAB = sin( 2 xAB )^2
sin12 = sqrt( 0.5*(1 - sqrt(1 - x12 )) );
sin13 = sqrt( 0.5*(1 - sqrt(1 - x13 )) );
sin23 = sqrt( 0.5*(1 - sqrt(1 - x23 )) );
}
if ( kNuType < 0 )
{
delta *= -1.0 ;
kAntiMNSMatrix = true ;
}
else
{
kAntiMNSMatrix = false ;
}
init_mixing_matrix( m21, lm32, sin12, sin23, sin13, delta );
}
void BargerPropagator::DefinePath(double cz, double ProdHeight, bool kSetProfile )
{
ProductionHeight = ProdHeight*1e5;
PathLength = sqrt( (REarth + ProductionHeight )*(REarth + ProductionHeight)
- (REarth*REarth)*( 1 - cz*cz)) - REarth*cz;
CosineZenith = cz;
if( kSetProfile )
Earth->SetDensityProfile( CosineZenith, PathLength, ProductionHeight );
}
void BargerPropagator::SetMatterPathLength()
{
int Layers = Earth->get_LayersTraversed( );
MatterPathLength = 0.0;
AirPathLength = 0.0;
for( int i = 1 ; i < Layers ; i++ )
MatterPathLength += Earth->get_DistanceAcrossLayer(i);
AirPathLength += Earth->get_DistanceAcrossLayer(0);
}
void BargerPropagator::SetAirPathLength(double x)
{
// argument is [km], convert to [cm]
AirPathLength = x*1.0e5 - MatterPathLength;
}
double BargerPropagator::GetVacuumProb( int Alpha, int Beta , double Energy, double Path )
{
// alpha -> 1:e 2:mu 3:tau
// Energy[GeV]
// Path[km]
/// simple referes to the fact that in the 3 flavor analysis
// the solar mass term is zero
double Probs[3][3];
get_vacuum_probability( Alpha, Energy, Path, Probs );
Alpha = abs(Alpha);
Beta = abs(Beta);
if ( Alpha > 0 )
return Probs[Alpha-1][Beta-1];
if ( Alpha < 0 ) // assuming CPT!!!
return Probs[Beta-1][Alpha-1];
std::cerr << " BargerPropagator::GetVacuumProb neutrino must be non-zero: " << std::endl;
return -1.0;
}
void BargerPropagator::propagateLinear( int NuFlavor, double pathlength, double Density )
{
int i,j;
double TransitionMatrix[3][3][2];
double TransitionProduct[3][3][2];
double TransitionTemp[3][3][2];
double RawInputPsi[3][2];
double OutputPsi[3][2];
if( ! kSuppressWarnings )
if(
( kAntiMNSMatrix && NuFlavor > 0) ||
(!kAntiMNSMatrix && NuFlavor < 0)
)
{
std::cout << " Warning BargerPropagator::propagateLinear - " << std::endl;
std::cout << " Propagating neutrino flavor and MNS matrix definition differ :" << std::endl;
std::cout << " MNS Matrix was defined for : " << ( kAntiMNSMatrix ? " Nubar " : "Nu" )<< std::endl;
std::cout << " Propagation is for : " << ( NuFlavor < 0 ? " Nubar " : "Nu" )<< std::endl;
std::cout << " Please check your call to BargerPropagator::SetMNS() " << std::endl;
std::cout << " This message can be suppressed with a call to BargerPropagator::SuppressWarnings() " << std::endl;
exit(-1);
}
clear_complex_matrix( TransitionMatrix );
clear_complex_matrix( TransitionProduct );
clear_complex_matrix( TransitionTemp );
ClearProbabilities();
get_transition_matrix( NuFlavor,
Energy , // in GeV
Density * density_convert,
pathlength , // in km
TransitionMatrix, // Output transition matrix
0.0
);
copy_complex_matrix( TransitionMatrix , TransitionProduct );
for ( i = 0 ; i < 3 ; i++ )
{
for ( j = 0 ; j < 3 ; j++ )
{ RawInputPsi[j][0] = 0.0; RawInputPsi[j][1] = 0.0; }
if( kUseMassEigenstates )
convert_from_mass_eigenstate( i+1, NuFlavor, RawInputPsi );
else
RawInputPsi[i][0] = 1.0;
multiply_complex_matvec( TransitionProduct, RawInputPsi, OutputPsi );
Probability[i][0] += OutputPsi[0][0] * OutputPsi[0][0] + OutputPsi[0][1]*OutputPsi[0][1];
Probability[i][1] += OutputPsi[1][0] * OutputPsi[1][0] + OutputPsi[1][1]*OutputPsi[1][1];
Probability[i][2] += OutputPsi[2][0] * OutputPsi[2][0] + OutputPsi[2][1]*OutputPsi[2][1];
}// end of loop on neutrino types
}