forked from boostcampaitech3/level2-klue-level2-nlp-07
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
150 lines (128 loc) · 5.97 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from torch.utils.data import DataLoader
from modified_load_data import *
import pandas as pd
import torch
import torch.nn.functional as F
import pickle as pickle
import numpy as np
import argparse
from tqdm import tqdm
from importlib import import_module
def inference(model, tokenized_sent, device):
"""
test dataset을 DataLoader로 만들어 준 후,
batch_size로 나눠 model이 예측 합니다.
"""
dataloader = DataLoader(tokenized_sent, batch_size=32, shuffle=False)
model.eval()
output_pred = []
output_prob = []
for i, data in enumerate(tqdm(dataloader)):
with torch.no_grad():
outputs = model(
input_ids=data['input_ids'].to(device),
attention_mask=data['attention_mask'].to(device),
token_type_ids=data['token_type_ids'].to(device)
)
logits = outputs[0]
prob = F.softmax(logits, dim=-1).detach().cpu().numpy()
logits = logits.detach().cpu().numpy()
result = np.argmax(logits, axis=-1)
output_pred.append(result)
output_prob.append(prob)
return np.concatenate(output_pred).tolist(), np.concatenate(output_prob, axis=0).tolist()
def num_to_label(label):
"""
숫자로 되어 있던 class를 원본 문자열 라벨로 변환 합니다.
"""
origin_label = []
with open('dict_num_to_label.pkl', 'rb') as f:
dict_num_to_label = pickle.load(f)
for v in label:
origin_label.append(dict_num_to_label[v])
return origin_label
def ensemble_probs(filenames, weights=None, NUM_CLASS=30, output_filename="./ensemble.csv"):
'''
parameter:
filenames (list) = ['./output.csv', './submission.csv']
weights (list) = [0.7, 0.3]
NUM_CLASS (int) = 30 [default]
output_filename (str) = "./ensemble.csv" [default]
output:
soft-voting한 output_filename file 생성
'''
if not weights:
weights = [1] * len(filenames)
output_prob = []
for fname, w in zip(filenames, weights):
Mat = np.array(eval(','.join(list(pd.read_csv(fname)['probs']))))
output_prob.append(w * Mat)
if not weights:
output_prob = np.mean(output_prob, 0).tolist()
else:
output_prob = np.sum(output_prob, 0).tolist()
test_id = pd.read_csv(filenames[0])['id']
pred_answer = num_to_label(np.argmax(output_prob, axis=1))
output = pd.DataFrame({'id':test_id,'pred_label':pred_answer,'probs':output_prob,})
output.to_csv(output_filename, index=False)
print('-- done --')
def load_test_dataset(dataset_dir, tokenizer):
"""
test dataset을 불러온 후,
tokenizing 합니다.
"""
load = getattr(import_module(args.load_data_filename), args.load_data_func_load)
test_dataset = load(dataset_dir)
test_label = list(map(int,test_dataset['label'].values))
# tokenizing dataset
tokenize = getattr(import_module(args.load_data_filename), args.load_data_func_tokenized)
tokenized_test = tokenize(test_dataset, tokenizer, args.special_entity_type, args.preprocess, args.clue_question)
return test_dataset['id'], tokenized_test, test_label
def main(args):
"""
주어진 dataset csv 파일과 같은 형태일 경우 inference 가능한 코드입니다.
"""
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# load tokenizer
Tokenizer_NAME = args.model
tokenizer = AutoTokenizer.from_pretrained(Tokenizer_NAME, additional_special_tokens=['#', '@'])
## load my model
MODEL_NAME = args.model_dir # model dir.
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
model.resize_token_embeddings(len(tokenizer))
model.parameters
model.to(device)
## load test datset
test_dataset_dir = args.test_dataset
test_id, test_dataset, test_label = load_test_dataset(test_dataset_dir, tokenizer)
re_data = getattr(import_module(args.load_data_filename), args.load_data_class)
Re_test_dataset = re_data(test_dataset ,test_label)
## predict answer
pred_answer, output_prob = inference(model, Re_test_dataset, device) # model에서 class 추론
pred_answer = num_to_label(pred_answer) # 숫자로 된 class를 원래 문자열 라벨로 변환.
## make csv file with predicted answer
#########################################################
# 아래 directory와 columns의 형태는 지켜주시기 바랍니다.
output = pd.DataFrame({'id':test_id,'pred_label':pred_answer,'probs':output_prob,})
output.to_csv('./prediction/'+args.file_name+'.csv', index=False) # 최종적으로 완성된 예측한 라벨 csv 파일 형태로 저장.
#### 필수!! ##############################################
print('---- Finish! ----')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model dir
parser.add_argument('--test_dataset', type=str, default="../dataset/test/test_data.csv")
parser.add_argument('--model_dir', type=str, default="./best_model")
parser.add_argument('--special_entity_type', type=str, default="typed_entity", choices=["baseline", "punct", "entity", "typed_entity"], help="(default: typed_entity)")
parser.add_argument('--preprocess', type=bool, default=False, help="apply preprocess")
parser.add_argument('--clue_type', type=str, default="question", choices=["question", "entity"], help="(default: question)")
parser.add_argument("--model", type=str, default="klue/bert-base", help="model to train (default: klue/bert-base)")
parser.add_argument('--file_name', type=str, default="submission")
# load_data module
parser.add_argument('--load_data_filename', type=str, default="modified_load_data")
parser.add_argument('--load_data_func_load', type=str, default="load_data")
parser.add_argument('--load_data_func_tokenized', type=str, default="tokenized_dataset")
parser.add_argument('--load_data_class', type=str, default="RE_Dataset")
args = parser.parse_args()
print(args)
main(args)