-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added first version of kmer histo plotting script
- Loading branch information
1 parent
5018419
commit 23d493f
Showing
1 changed file
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
#!/usr/bin/env python | ||
|
||
import numpy as np | ||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
import sys | ||
|
||
filename = sys.argv[1] | ||
kmap = {} | ||
|
||
with open(filename, 'r') as f: | ||
for line in f: | ||
x, y = line.strip().split('\t') | ||
kmap[int(x)] = float(y) | ||
|
||
arrx = np.arange(1,max(kmap.keys()) + 1) | ||
arry = [kmap[x] if x in kmap else 0.0 for x in np.arange(1,max(kmap.keys()) + 1)] | ||
df = pd.Series(arry, index=arrx) | ||
rolling5 = df.rolling(window=5).mean() | ||
rolling20 = df.rolling(window=20).mean() | ||
rolling50 = df.rolling(window=50).mean() | ||
ewm5 = df.ewm(span=5,adjust=False).mean() | ||
ewm20 = df.ewm(span=20,adjust=False).mean() | ||
ewm50 = df.ewm(span=50,adjust=False).mean() | ||
|
||
def get_eq_pos(data): | ||
try: | ||
return [len(set(dlist))==1 and dlist[0] > 0.0 for dlist in zip(data[0:],data[1:],data[2:],data[3:],data[4:])].index(True) | ||
except ValueError: | ||
return 'NA' | ||
|
||
def get_smaller_pos(data1, data2, length): | ||
smaller = data1 < data2 | ||
tozip = [smaller[x:] for x in np.arange(0,length)] | ||
try: | ||
return [len(set(dlist))==1 and dlist[0] > 0.0 for dlist in zip(*tozip)].index(True) | ||
except ValueError: | ||
return 1 | ||
|
||
ewm5min = get_smaller_pos(ewm5.cummin(), ewm5, 6) | ||
rolling5min = get_smaller_pos(rolling5.cummin(), rolling5, 6) | ||
dfmin = get_smaller_pos(df.cummin(), df, 6) | ||
first = get_smaller_pos(df.cummin(), df, 1) | ||
inflexion = np.diff(df, 2).tolist() | ||
inf_point = inflexion.index(list(filter(lambda x: x<0, inflexion))[0]) | ||
|
||
#plt.semilogy(df, color='blue', label='original data') | ||
#plt.semilogy((df.cummin()), '--', color='blue', label='cum min original data') | ||
#plt.semilogy(rolling5, color='red', label='rolling window (length 5)') | ||
#plt.semilogy((rolling5.cummin()), '--', color='red', label='cum min rolling') | ||
#plt.semilogy(ewm5, color='green', label='exponential window (length5)') | ||
#plt.semilogy((ewm5.cummin()), '--', color='green', label='cum min exponential') | ||
#plt.axis([0,200,0.1,max(kmap.values())]) | ||
#plt.xlabel("Depth of kmer") | ||
#plt.ylabel("#kmers with depth x") | ||
#plt.title("Smoothing the kmer histogram") | ||
|
||
#plt.loglog(rolling5, color='red', label='rolling window (length 5)') | ||
#plt.loglog((rolling5.cummin()), '--', color='red', label='cum min rolling') | ||
plt.loglog(df, color='blue', label='original data') | ||
plt.loglog((df.cummin()), '--', color='blue', label='cum min original data') | ||
#plt.loglog(ewm5, color='green', label='exponential window (length 5)') | ||
#plt.loglog((ewm5.cummin()), '--', color='green', label='cum min exponential') | ||
plt.axis([1,max(kmap.keys()),0.1,max(kmap.values())*10]) | ||
plt.xlabel("Depth of kmer") | ||
plt.ylabel("#kmers with depth x") | ||
plt.title("k-mer histogram of cluster") | ||
|
||
#plt.plot(df, color='blue') | ||
#plt.plot((df.cummin()), '--', color='blue') | ||
#plt.plot(rolling5, color='red') | ||
#plt.plot((rolling5.cummin()), '--', color='red') | ||
#plt.plot(ewm5, color='green') | ||
#plt.plot((ewm5.cummin()), '--', color='green') | ||
#plt.axis([0,max(ewm5min, rollinblueg5min, dfmin) + 50,0,5]) | ||
|
||
plt.axvline(dfmin - 1, color='red') | ||
#plt.axvline(first, color='black') | ||
#plt.axvline(inf_point - 1, color='green') | ||
#plt.axvline(turn_point, color='red') | ||
#plt.axvline(ewm5min, color='green') | ||
#plt.axvline(rolling5min, color='red') | ||
#plt.axvline(2, color='black') | ||
plt.legend(loc='best', prop={'size' : 8}) | ||
plt.savefig(sys.argv[2], dpi=300) | ||
|
||
#print get_eq_pos(ewm5.cummin()) | ||
#print get_eq_pos(rolling5.cummin()) | ||
#print get_eq_pos(df.cummin()) | ||
|
||
#a = np.array([kmap[x] if x in kmap else 0.0 for x in np.arange(1,max(kmap.keys()))]) |