-
Notifications
You must be signed in to change notification settings - Fork 12
/
config.py
146 lines (136 loc) · 7.61 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# @Author: Haozhe Xie
# @Date: 2020-04-09 11:05:17
# @Last Modified by: Haozhe Xie
# @Last Modified time: 2020-11-05 13:37:07
# @Email: [email protected]
from datetime import datetime
from easydict import EasyDict as edict
__C = edict()
#
# Dataset Config
#
__C.DATASETS = edict()
__C.DATASETS.DAVIS = edict()
__C.DATASETS.DAVIS.INDEXING_FILE_PATH = './datasets/DAVIS.json'
__C.DATASETS.DAVIS.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/DAVIS/JPEGImages/480p/%s/%05d.jpg'
__C.DATASETS.DAVIS.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/DAVIS/Annotations/480p/%s/%05d.png'
__C.DATASETS.DAVIS.OPTICAL_FLOW_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/DAVIS/OpticalFlows/480p/%s/%05d.flo'
__C.DATASETS.YOUTUBE_VOS = edict()
__C.DATASETS.YOUTUBE_VOS.INDEXING_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/YouTubeVOS/%s/meta.json'
__C.DATASETS.YOUTUBE_VOS.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/YouTubeVOS/%s/JPEGImages/%s/%s.jpg'
__C.DATASETS.YOUTUBE_VOS.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/YouTubeVOS/%s/Annotations/%s/%s.png'
__C.DATASETS.YOUTUBE_VOS.OPTICAL_FLOW_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/YouTubeVOS/%s/OpticalFlows/%s/%s.flo'
__C.DATASETS.PASCAL_VOC = edict()
__C.DATASETS.PASCAL_VOC.INDEXING_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/voc2012/trainval.txt'
__C.DATASETS.PASCAL_VOC.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/voc2012/images/%s.jpg'
__C.DATASETS.PASCAL_VOC.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/voc2012/masks/%s.png'
__C.DATASETS.ECSSD = edict()
__C.DATASETS.ECSSD.N_IMAGES = 1000
__C.DATASETS.ECSSD.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/ecssd/images/%s.jpg'
__C.DATASETS.ECSSD.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/ecssd/masks/%s.png'
__C.DATASETS.MSRA10K = edict()
__C.DATASETS.MSRA10K.INDEXING_FILE_PATH = './datasets/msra10k.txt'
__C.DATASETS.MSRA10K.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/msra10k/images/%s.jpg'
__C.DATASETS.MSRA10K.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/msra10k/masks/%s.png'
__C.DATASETS.MSCOCO = edict()
__C.DATASETS.MSCOCO.INDEXING_FILE_PATH = './datasets/mscoco.txt'
__C.DATASETS.MSCOCO.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/coco2017/images/train2017/%s.jpg'
__C.DATASETS.MSCOCO.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/coco2017/masks/train2017/%s.png'
__C.DATASETS.ADE20K = edict()
__C.DATASETS.ADE20K.INDEXING_FILE_PATH = './datasets/ade20k.txt'
__C.DATASETS.ADE20K.IMG_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/ADE20K_2016_07_26/images/training/%s.jpg'
__C.DATASETS.ADE20K.ANNOTATION_FILE_PATH = '/home/SENSETIME/xiehaozhe/Datasets/ADE20K_2016_07_26/images/training/%s_seg.png'
#
# Dataset
#
__C.DATASET = edict()
# Dataset Options: DAVIS, DAVIS_FRAMES, YOUTUBE_VOS, ECSSD, MSCOCO, PASCAL_VOC, MSRA10K, ADE20K
__C.DATASET.TRAIN_DATASET = ['ECSSD', 'PASCAL_VOC', 'MSRA10K', 'MSCOCO']
__C.DATASET.TRAIN_DATASET = ['YOUTUBE_VOS', 'DAVISx5']
__C.DATASET.TEST_DATASET = 'DAVIS'
#
# Constants
#
__C.CONST = edict()
__C.CONST.RNG_SEED = 0
__C.CONST.N_WORKERS = 4
__C.CONST.IGNORE_IDX = 255
__C.CONST.DATASET_MEAN = [0.485, 0.456, 0.406]
__C.CONST.DATASET_STD = [0.229, 0.224, 0.225]
__C.CONST.EXP_NAME = datetime.now().isoformat()
#
# Directories
#
__C.DIR = edict()
__C.DIR.OUTPUT_DIR = './output'
#
# Memcached
#
__C.MEMCACHED = edict()
__C.MEMCACHED.ENABLED = False
__C.MEMCACHED.LIBRARY_PATH = '/mnt/lustre/share/pymc/py3'
__C.MEMCACHED.SERVER_CONFIG = '/mnt/lustre/share/memcached_client/server_list.conf'
__C.MEMCACHED.CLIENT_CONFIG = '/mnt/lustre/share/memcached_client/client.conf'
#
# PAVI
#
__C.PAVI = edict()
__C.PAVI.ENABLED = False
__C.PAVI.PROJECT_NAME = 'Semi-Video-Segmentation'
__C.PAVI.TAGS = ['rmnet']
#
# Train
#
__C.TRAIN = edict()
__C.TRAIN.BATCH_SIZE = 4
__C.TRAIN.N_EPOCHS = 200
__C.TRAIN.N_MAX_OBJECTS = 3
__C.TRAIN.N_MAX_FRAMES = 3
__C.TRAIN.USE_RANDOM_FRAME_STEPS = True
__C.TRAIN.USE_BATCH_NORM = False
__C.TRAIN.MAX_FRAME_STEPS = 20
__C.TRAIN.KEEP_FRAME_STEPS_THRESHOLD = 0.745
__C.TRAIN.EPOCH_INDEX_FIXING_FRAME_STEPS = 75
__C.TRAIN.N_EPOCHS_KEEP_FRAME_STEPS = 3
__C.TRAIN.NETWORK = 'RMNet' # 'RMNet' or 'TinyFlowNet'
__C.TRAIN.LEARNING_RATE = 1e-5
__C.TRAIN.BETAS = (.9, .999)
__C.TRAIN.WEIGHT_DECAY = 0
__C.TRAIN.CKPT_SAVE_FREQ = 1
__C.TRAIN.CKPT_SAVE_THRESHOLD = 0.71
__C.TRAIN.MEMORIZE_EVERY = 1
__C.TRAIN.AUGMENTATION = edict()
__C.TRAIN.AUGMENTATION.RESIZE_SIZE = 480
__C.TRAIN.AUGMENTATION.RESIZE_KEEP_RATIO = True
__C.TRAIN.AUGMENTATION.CROP_HSIZE = 465
__C.TRAIN.AUGMENTATION.CROP_WSIZE = 465
__C.TRAIN.AUGMENTATION.COLOR_BRIGHTNESS = (0.97, 1.03)
__C.TRAIN.AUGMENTATION.COLOR_CONTRAST = None
__C.TRAIN.AUGMENTATION.COLOR_SATURATION = None
__C.TRAIN.AUGMENTATION.COLOR_HUE = None
__C.TRAIN.AUGMENTATION.AFFINE_IMAGE_DEGREES = (-20, 20)
__C.TRAIN.AUGMENTATION.AFFINE_IMAGE_TRANSLATE = (0, 0)
__C.TRAIN.AUGMENTATION.AFFINE_IMAGE_SCALE = (0.9, 1.1)
__C.TRAIN.AUGMENTATION.AFFINE_IMAGE_SHEARS = (-10, 10)
__C.TRAIN.AUGMENTATION.AFFINE_VIDEO_DEGREES = (-15, 15)
__C.TRAIN.AUGMENTATION.AFFINE_VIDEO_TRANSLATE = (0, 0)
__C.TRAIN.AUGMENTATION.AFFINE_VIDEO_SCALE = (1.0, 1.3)
__C.TRAIN.AUGMENTATION.AFFINE_VIDEO_SHEARS = (-10, 10)
__C.TRAIN.AUGMENTATION.AFFINE_IMAGE_FILL_COLOR = (255, 255, 255)
__C.TRAIN.AUGMENTATION.AFFINE_MASK_FILL_COLOR = 255
__C.TRAIN.AUGMENTATION.AFFINE_FLOW_FILL_COLOR = (0, 0)
#
# Test
#
__C.TEST = edict()
__C.TEST.N_MAX_OBJECTS = 10
__C.TEST.VISUALIZE_EVERY = 10
__C.TEST.MEMORIZE_EVERY = 5
__C.TEST.MAIN_METRIC_NAME = 'JF-Mean'
__C.TEST.FLIP_LR = False
__C.TEST.FRAME_SCALES = [1.0]
# DAVIS
__C.TEST.TESTING_VIDEOS_INDEXES = [0, 2, 3, 8, 10, 18, 19, 24, 27, 29]
# YouTube VOS 2019
# __C.TEST.TESTING_VIDEOS_INDEXES = [38, 43, 59, 156, 184, 257, 267, 503]