-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer_pos.py
290 lines (257 loc) · 12.5 KB
/
trainer_pos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
from argparse import Namespace
import torch.types
from models.ddim_bitdit_class import BitDit
from data.pos.pos_dataset import LabelSet, POSDataset, Collator
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from torch.optim import AdamW
import wandb
from tqdm import tqdm
from prettytable import PrettyTable
class Trainer:
def __init__(self, args: Namespace):
self.args = args
self._print_hyperparameters()
if self.args.logger == 'wandb':
# init logger
run_name = "--".join([str(args.lr_bert), str(args.lr_other), str(args.max_epochs)])
wandb.init(project="DiffusionPOS", name=run_name)
wandb.config.update(self.args)
wandb.define_metric("f1", summary="max")
self.device = self._configure_device()
self.dataset_path = os.path.join(os.getcwd(), 'datasets', self.args.dataset)
self.label_set = LabelSet(self.args.dataset)
if self.args.num_classes != len(self.label_set):
print(
f"the number of classes({self.args.num_classes}) you input is not equal from the statistic of dataset({len(self.label_set)})")
print(f"automatically set num_classes to {len(self.label_set)} from {self.args.num_classes}")
self.args.num_classes = len(self.label_set)
self.model = BitDit(device=self.device,
num_classes=self.args.num_classes,
backbone=self.args.backbone,
time_steps=self.args.time_steps,
sampling_steps=self.args.sampling_steps,
noise_schedule=self.args.noise_schedule,
ddim_sampling_eta=self.args.ddim_sampling_eta,
self_condition=self.args.self_condition,
snr_scale=self.args.snr_scale,
dataset=self.args.dataset,
dim_model=self.args.dim_model,
dim_time=self.args.dim_time,
objective=self.args.objective,
loss_type=self.args.loss_type,
add_lstm=self.args.add_lstm,
freeze_bert=self.args.freeze_bert,
max_length=self.args.max_length,
depth=self.args.depth,
num_labels=len(self.label_set))
if self.args.logger == "wandb":
wandb.watch(self.model, log_freq=1000)
self.tokenizer = AutoTokenizer.from_pretrained(self.args.backbone)
self.collate_fn = Collator(self.tokenizer, self.args.max_length)
self.train_dataloader = self._get_dataloader('train', self.args.batch_size)
self.dev_dataloader = self._get_dataloader('dev', self.args.batch_size)
self.test_dataloader = self._get_dataloader('test', self.args.batch_size)
self.steps = self.args.max_steps
self.optimizer, self.lr_scheduler = \
self._configure_optimizer_and_scheduler(self.args.optimizer_type, self.args.lr_scheduler_type)
def _get_dataloader(self, mode: str, bsz: int):
assert mode in ['train', 'dev', 'test']
dataset = POSDataset(self.args.dataset, mode, self.label_set)
dataloader = DataLoader(dataset,
batch_size=bsz,
num_workers=self.args.num_workers,
drop_last=False,
shuffle=True if mode == "train" else False,
collate_fn=self.collate_fn)
return dataloader
def _print_hyperparameters(self):
hparams = PrettyTable()
hparams.title = 'Hyper Parameters'
hparams.field_names = ["Name", "Value"]
hparams.add_rows([[k, v] for k, v in self.args.__dict__.items()])
print(hparams)
def _configure_device(self):
device = 'cpu'
if self.args.use_gpu and torch.cuda.is_available():
print(f"{torch.cuda.device_count()} gpus are available!")
device = torch.device(self.args.gpus)
print(f"current gpu information:")
cuda_property = torch.cuda.get_device_properties(device)
print(f"number: {device}\t\tname: {cuda_property.name}\t\tmemory: {cuda_property.total_memory}")
else:
print("gpu is not available!")
return device
def _configure_optimizer_and_scheduler(self, optimizer_type: str, lr_scheduler_type: str):
assert optimizer_type in ['AdamW'], f'do not support {optimizer_type}'
assert lr_scheduler_type in ['linear', 'cosine', 'constant', 'cosine_hard_restart'], \
f'do not support {lr_scheduler_type}'
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_params = [
{'params': [p for n, p in self.model.named_parameters() if
not any(nd in n for nd in no_decay) and 'backbone' in n],
'weight_decay': self.args.weight_decay,
'lr': self.args.lr_bert},
{'params': [p for n, p in self.model.named_parameters() if
any(nd in n for nd in no_decay) and 'backbone' in n],
'weight_decay': 0.0,
'lr': self.args.lr_bert},
{'params': [p for n, p in self.model.named_parameters() if 'backbone' not in n],
'weight_decay': self.args.weight_decay,
'lr': self.args.lr_other},
]
max_lrs = [self.args.lr_bert, self.args.lr_bert, self.args.lr_other]
if self.args.freeze_bert:
optimizer_params = optimizer_params[2:]
max_lrs = [self.args.lr_other]
optimizer = AdamW(optimizer_params)
total_steps = self.args.max_epochs * len(self.train_dataloader)
# num_warmup_steps = 0
# if not self.args.warmup_steps:
# num_warmup_steps = self.args.warmup_steps
# if not self.args.warmup_ratio:
# num_warmup_steps = total_steps * self.args.warmup_ratio
# scheduler = get_lr_scheduler(name=lr_scheduler_type,
# optimizer=optimizer,
# num_warmup_steps=num_warmup_steps,
# num_training_steps=total_steps,
# num_cycles=self.args.num_cycles)
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=max_lrs, total_steps=total_steps)
return optimizer, scheduler
def _step(self, batch):
input_ids, attention_mask, seq_labels = [x.to(self.device) for x in batch]
model_outputs = self.model(input_ids, attention_mask, seq_labels, ensemble=self.args.ensemble)
return model_outputs
def train_step(self, batch):
self.optimizer.zero_grad()
loss = self._step(batch)
loss.backward()
self.optimizer.step()
self.lr_scheduler.step()
return loss.item()
def train_epoch(self, i_th: int):
self.model.train()
tqdm_train_loop = tqdm(enumerate(self.train_dataloader), total=len(self.train_dataloader),
desc=f'train epoch{i_th + 1}')
loss_epoch = []
for i, batch in tqdm_train_loop:
loss = self.train_step(batch)
loss_epoch.append(loss)
tqdm_train_loop.set_postfix(loss=loss)
loss_epoch = sum(loss_epoch) / len(loss_epoch)
return loss_epoch
def train(self):
f_best = 0
for i in range(self.args.max_epochs):
loss = self.train_epoch(i)
if self.args.logger == 'wandb':
wandb.log({'loss': loss})
print(f"{i + 1} epoch average loss: {loss}")
if i % 1 == 0:
p, r, f = self.eval_epoch('dev')
if f > f_best:
f_best = f
print(f"f1 achieve best at {i + 1} epoch: {f_best}")
path = "best_f1_{:.4f}".format(f_best)
self.save(path)
def eval_step(self, batch):
bsz = batch[0].shape[0]
# [bsz, len]
results, path_x = self._step(batch)
gold_labels = batch[2]
pred_labels = results
labels_mask = gold_labels != -100
num_gold, num_pred, num_tp = 0, 0, 0
num_correct_label, num_all_label = 0, 0
for i in range(bsz):
gl = gold_labels[i][labels_mask[i]].tolist()
pl = pred_labels[i][labels_mask[i]].tolist()
assert len(gl) == len(pl), 'the num of gold and pred labels must be the same'
gold_ents = self._decode(gl)
pred_ents = self._decode(pl)
num_gold += len(gold_ents)
num_pred += len(pred_ents)
num_tp += len(list(set(gold_ents).intersection(set(pred_ents))))
correct_label = sum([1 if g == p else 0 for g, p in zip(gl, pl)])
num_correct_label += correct_label
num_all_label += len(gl)
return num_gold, num_pred, num_tp, num_correct_label, num_all_label
@torch.no_grad()
def eval_epoch(self, mode: str):
dataloader = self.dev_dataloader if mode == 'dev' else self.test_dataloader
self.model.eval()
total_gold, total_pred, total_tp = 0, 0, 0
total_ncl, total_nal = 0, 0
tqdm_loop = tqdm(enumerate(dataloader), total=len(dataloader), desc=f'{mode} epoch')
for i, batch in tqdm_loop:
ng, np, ntp, ncl, nal = self.eval_step(batch)
total_gold += ng
total_pred += np
total_tp += ntp
total_ncl += ncl
total_nal += nal
print(f"num_gold: {total_gold}")
print(f"num_pred: {total_pred}")
print(f"num_true_positive: {total_tp}")
precision, recall, f1 = self._calculate_prf(total_gold, total_pred, total_tp)
print(f"precision: {precision}")
print(f"recall: {recall}")
print(f"f1: {f1}")
print(f"label accuracy: {total_ncl / total_nal}")
prf_table = PrettyTable()
prf_table.title = "prf per class"
prf_table.field_names = ['precision', 'recall', 'f1', 'num_pred', 'num_gold', 'num_tp', "label accuracy"]
prf_table.add_row([precision, recall, f1, total_pred, total_gold, total_tp, total_ncl / total_nal])
print(prf_table)
# if self.args.logger == "wandb":
# wandb.log({"{} precision": precision})
# wandb.log({'recall': recall})
return precision, recall, f1
def _calculate_prf(self, num_gold: int, num_pred: int, num_tp: int):
precision = num_tp / num_pred if num_pred != 0 else 0.
recall = num_tp / num_gold if num_gold != 0 else 0.
f1 = (2 * precision * recall) / (precision + recall) if (precision + recall) else 0.
return precision, recall, f1
def _decode(self, labels):
labels = [self.label_set.id2label(i) for i in labels]
decoded_entities = []
for i, label in enumerate(labels):
if label.startswith('S-'):
decoded_entities.append(((i, i), label[2:]))
elif label.startswith('B-'):
start = i
ent = label[2:]
j = i + 1
while j < len(labels):
if labels[j] == "M-" + ent:
j += 1
continue
elif labels[j] == "E-" + ent:
end = j
decoded_entities.append(((start, end), ent))
j += 1
break
else:
break
return decoded_entities
def save(self, path=None):
dir_ = '-'.join(self.args.config_file.split('.')[:-1])
dir_path = os.path.join(self.args.output_dir, dir_)
if not os.path.exists(dir_path):
os.mkdir(dir_path)
if path is None:
path = os.path.join(dir_path, self.args.model_path)
else:
path = os.path.join(dir_path, path)
print(f"save model checkpoints to {path}")
torch.save(self.model.state_dict(), path)
def load(self, path=None):
dir_ = '-'.join(self.args.config_file.split('.')[:-1])
dir_path = os.path.join(self.args.output_dir, dir_)
if path is None:
path = os.path.join(dir_path, self.args.model_path)
else:
path = os.path.join(dir_path, path)
print(f"load model checkpoints from {path}...")
self.model.load_state_dict(torch.load(path))