diff --git a/docs/en/guides/distance-calculation.md b/docs/en/guides/distance-calculation.md index 3a4f99f4244..8b48cc0a200 100644 --- a/docs/en/guides/distance-calculation.md +++ b/docs/en/guides/distance-calculation.md @@ -23,6 +23,7 @@ Measuring the gap between two objects is known as distance calculation within a !!! Example "Distance Calculation using YOLOv8 Example" === "Video Stream" + ```python from ultralytics import YOLO from ultralytics.solutions import distance_calculation @@ -68,13 +69,13 @@ Measuring the gap between two objects is known as distance calculation within a ### Optional Arguments `set_args` -| Name | Type | Default | Description | -|----------------|--------|-----------------|--------------------------------------------------------| -| names | `dict` | `None` | Classes names | -| view_img | `bool` | `False` | Display frames with counts | -| line_thickness | `int` | `2` | Increase bounding boxes thickness | -| line_color | `RGB` | `(255, 255, 0)` | Line Color for centroids mapping on two bounding boxes | -| centroid_color | `RGB` | `(255, 0, 255)` | Centroid color for each bounding box | +| Name | Type | Default | Description | +|------------------|--------|-----------------|--------------------------------------------------------| +| `names` | `dict` | `None` | Classes names | +| `view_img` | `bool` | `False` | Display frames with counts | +| `line_thickness` | `int` | `2` | Increase bounding boxes thickness | +| `line_color` | `RGB` | `(255, 255, 0)` | Line Color for centroids mapping on two bounding boxes | +| `centroid_color` | `RGB` | `(255, 0, 255)` | Centroid color for each bounding box | ### Arguments `model.track` diff --git a/docs/en/guides/heatmaps.md b/docs/en/guides/heatmaps.md index e52f2383354..100638839de 100644 --- a/docs/en/guides/heatmaps.md +++ b/docs/en/guides/heatmaps.md @@ -42,6 +42,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult !!! Example "Heatmaps using Ultralytics YOLOv8 Example" === "Heatmap" + ```python from ultralytics import YOLO from ultralytics.solutions import heatmap @@ -83,6 +84,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult ``` === "Line Counting" + ```python from ultralytics import YOLO from ultralytics.solutions import heatmap @@ -126,6 +128,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult ``` === "Region Counting" + ```python from ultralytics import YOLO from ultralytics.solutions import heatmap @@ -170,6 +173,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult ``` === "Im0" + ```python from ultralytics import YOLO from ultralytics.solutions import heatmap @@ -194,6 +198,7 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult ``` === "Specific Classes" + ```python from ultralytics import YOLO from ultralytics.solutions import heatmap @@ -238,22 +243,22 @@ A heatmap generated with [Ultralytics YOLOv8](https://github.com/ultralytics/ult ### Arguments `set_args` -| Name | Type | Default | Description | -|---------------------|----------------|-------------------|-----------------------------------------------------------| -| view_img | `bool` | `False` | Display the frame with heatmap | -| colormap | `cv2.COLORMAP` | `None` | cv2.COLORMAP for heatmap | -| imw | `int` | `None` | Width of Heatmap | -| imh | `int` | `None` | Height of Heatmap | -| heatmap_alpha | `float` | `0.5` | Heatmap alpha value | -| count_reg_pts | `list` | `None` | Object counting region points | -| count_txt_thickness | `int` | `2` | Count values text size | -| count_txt_color | `RGB Color` | `(0, 0, 0)` | Foreground color for Object counts text | -| count_color | `RGB Color` | `(255, 255, 255)` | Background color for Object counts text | -| count_reg_color | `RGB Color` | `(255, 0, 255)` | Counting region color | -| region_thickness | `int` | `5` | Counting region thickness value | -| decay_factor | `float` | `0.99` | Decay factor for heatmap area removal after specific time | -| shape | `str` | `circle` | Heatmap shape for display "rect" or "circle" supported | -| line_dist_thresh | `int` | `15` | Euclidean Distance threshold for line counter | +| Name | Type | Default | Description | +|-----------------------|----------------|-------------------|-----------------------------------------------------------| +| `view_img` | `bool` | `False` | Display the frame with heatmap | +| `colormap` | `cv2.COLORMAP` | `None` | cv2.COLORMAP for heatmap | +| `imw` | `int` | `None` | Width of Heatmap | +| `imh` | `int` | `None` | Height of Heatmap | +| `heatmap_alpha` | `float` | `0.5` | Heatmap alpha value | +| `count_reg_pts` | `list` | `None` | Object counting region points | +| `count_txt_thickness` | `int` | `2` | Count values text size | +| `count_txt_color` | `RGB Color` | `(0, 0, 0)` | Foreground color for Object counts text | +| `count_color` | `RGB Color` | `(255, 255, 255)` | Background color for Object counts text | +| `count_reg_color` | `RGB Color` | `(255, 0, 255)` | Counting region color | +| `region_thickness` | `int` | `5` | Counting region thickness value | +| `decay_factor` | `float` | `0.99` | Decay factor for heatmap area removal after specific time | +| `shape` | `str` | `circle` | Heatmap shape for display "rect" or "circle" supported | +| `line_dist_thresh` | `int` | `15` | Euclidean Distance threshold for line counter | ### Arguments `model.track` diff --git a/docs/en/guides/instance-segmentation-and-tracking.md b/docs/en/guides/instance-segmentation-and-tracking.md index 5c6fb589714..0339ab900d0 100644 --- a/docs/en/guides/instance-segmentation-and-tracking.md +++ b/docs/en/guides/instance-segmentation-and-tracking.md @@ -26,6 +26,7 @@ There are two types of instance segmentation tracking available in the Ultralyti !!! Example "Instance Segmentation and Tracking" === "Instance Segmentation" + ```python import cv2 from ultralytics import YOLO @@ -68,6 +69,7 @@ There are two types of instance segmentation tracking available in the Ultralyti ``` === "Instance Segmentation with Object Tracking" + ```python import cv2 from ultralytics import YOLO diff --git a/docs/en/guides/object-blurring.md b/docs/en/guides/object-blurring.md index bb2f7443ee6..0b6faa3ec6d 100644 --- a/docs/en/guides/object-blurring.md +++ b/docs/en/guides/object-blurring.md @@ -19,6 +19,7 @@ Object blurring with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly !!! Example "Object Blurring using YOLOv8 Example" === "Object Blurring" + ```python from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors diff --git a/docs/en/guides/object-counting.md b/docs/en/guides/object-counting.md index b0f10c65e2d..bb44d397036 100644 --- a/docs/en/guides/object-counting.md +++ b/docs/en/guides/object-counting.md @@ -37,6 +37,7 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly !!! Example "Object Counting using YOLOv8 Example" === "Region" + ```python from ultralytics import YOLO from ultralytics.solutions import object_counter @@ -76,10 +77,10 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly cap.release() video_writer.release() cv2.destroyAllWindows() - ``` === "Line" + ```python from ultralytics import YOLO from ultralytics.solutions import object_counter @@ -122,6 +123,7 @@ Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly ``` === "Specific Classes" + ```python from ultralytics import YOLO from ultralytics.solutions import object_counter diff --git a/docs/en/guides/object-cropping.md b/docs/en/guides/object-cropping.md index 6400454f19b..554eeb8c91a 100644 --- a/docs/en/guides/object-cropping.md +++ b/docs/en/guides/object-cropping.md @@ -19,6 +19,7 @@ Object cropping with [Ultralytics YOLOv8](https://github.com/ultralytics/ultraly !!! Example "Object Cropping using YOLOv8 Example" === "Object Cropping" + ```python from ultralytics import YOLO from ultralytics.utils.plotting import Annotator, colors diff --git a/docs/en/guides/speed-estimation.md b/docs/en/guides/speed-estimation.md index 0e2cffe2faa..a597f522d07 100644 --- a/docs/en/guides/speed-estimation.md +++ b/docs/en/guides/speed-estimation.md @@ -26,6 +26,7 @@ Speed estimation is the process of calculating the rate of movement of an object !!! Example "Speed Estimation using YOLOv8 Example" === "Speed Estimation" + ```python from ultralytics import YOLO from ultralytics.solutions import speed_estimation @@ -76,14 +77,14 @@ Speed estimation is the process of calculating the rate of movement of an object ### Optional Arguments `set_args` -| Name | Type | Default | Description | -|------------------|--------|----------------------------|---------------------------------------------------| -| reg_pts | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | -| names | `dict` | `None` | Classes names | -| view_img | `bool` | `False` | Display frames with counts | -| line_thickness | `int` | `2` | Increase bounding boxes thickness | -| region_thickness | `int` | `5` | Thickness for object counter region or line | -| spdl_dist_thresh | `int` | `10` | Euclidean Distance threshold for speed check line | +| Name | Type | Default | Description | +|--------------------|--------|----------------------------|---------------------------------------------------| +| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area | +| `names` | `dict` | `None` | Classes names | +| `view_img` | `bool` | `False` | Display frames with counts | +| `line_thickness` | `int` | `2` | Increase bounding boxes thickness | +| `region_thickness` | `int` | `5` | Thickness for object counter region or line | +| `spdl_dist_thresh` | `int` | `10` | Euclidean Distance threshold for speed check line | ### Arguments `model.track` diff --git a/docs/en/guides/vision-eye.md b/docs/en/guides/vision-eye.md index c1734ff7e04..16314a82e6a 100644 --- a/docs/en/guides/vision-eye.md +++ b/docs/en/guides/vision-eye.md @@ -20,6 +20,7 @@ keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, Vi !!! Example "VisionEye Object Mapping using YOLOv8" === "VisionEye Object Mapping" + ```python import cv2 from ultralytics import YOLO @@ -62,6 +63,7 @@ keywords: Ultralytics, YOLOv8, Object Detection, Object Tracking, IDetection, Vi ``` === "VisionEye Object Mapping with Object Tracking" + ```python import cv2 from ultralytics import YOLO diff --git a/docs/en/guides/workouts-monitoring.md b/docs/en/guides/workouts-monitoring.md index c35cd0a81d1..b2297803f18 100644 --- a/docs/en/guides/workouts-monitoring.md +++ b/docs/en/guides/workouts-monitoring.md @@ -26,6 +26,7 @@ Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://gi !!! Example "Workouts Monitoring Example" === "Workouts Monitoring" + ```python from ultralytics import YOLO from ultralytics.solutions import ai_gym @@ -56,6 +57,7 @@ Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://gi ``` === "Workouts Monitoring with Save Output" + ```python from ultralytics import YOLO from ultralytics.solutions import ai_gym @@ -102,14 +104,14 @@ Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://gi ### Arguments `set_args` -| Name | Type | Default | Description | -|-----------------|--------|----------|----------------------------------------------------------------------------------------| -| kpts_to_check | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map | -| view_img | `bool` | `False` | Display the frame with counts | -| line_thickness | `int` | `2` | Increase the thickness of count value | -| pose_type | `str` | `pushup` | Pose that need to be monitored, "pullup" and "abworkout" also supported | -| pose_up_angle | `int` | `145` | Pose Up Angle value | -| pose_down_angle | `int` | `90` | Pose Down Angle value | +| Name | Type | Default | Description | +|-------------------|--------|----------|----------------------------------------------------------------------------------------| +| `kpts_to_check` | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map | +| `view_img` | `bool` | `False` | Display the frame with counts | +| `line_thickness` | `int` | `2` | Increase the thickness of count value | +| `pose_type` | `str` | `pushup` | Pose that need to be monitored, "pullup" and "abworkout" also supported | +| `pose_up_angle` | `int` | `145` | Pose Up Angle value | +| `pose_down_angle` | `int` | `90` | Pose Down Angle value | ### Arguments `model.predict` diff --git a/docs/en/hub/inference_api.md b/docs/en/hub/inference_api.md index e18574c55d8..b258d375eed 100644 --- a/docs/en/hub/inference_api.md +++ b/docs/en/hub/inference_api.md @@ -108,6 +108,7 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca !!! Example "Detect Model JSON Response" === "Local" + ```python from ultralytics import YOLO @@ -122,6 +123,7 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca ``` === "CLI API" + ```bash curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ -H "x-api-key: API_KEY" \ @@ -132,6 +134,7 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca ``` === "Python API" + ```python import requests @@ -153,6 +156,7 @@ YOLO detection models, such as `yolov8n.pt`, can return JSON responses from loca ``` === "JSON Response" + ```json { "success": True, @@ -202,6 +206,7 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr !!! Example "Segment Model JSON Response" === "Local" + ```python from ultralytics import YOLO @@ -216,6 +221,7 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr ``` === "CLI API" + ```bash curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ -H "x-api-key: API_KEY" \ @@ -226,6 +232,7 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr ``` === "Python API" + ```python import requests @@ -247,6 +254,7 @@ YOLO segmentation models, such as `yolov8n-seg.pt`, can return JSON responses fr ``` === "JSON Response" + Note `segments` `x` and `y` lengths may vary from one object to another. Larger or more complex objects may have more segment points. ```json { @@ -339,6 +347,7 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca !!! Example "Pose Model JSON Response" === "Local" + ```python from ultralytics import YOLO @@ -353,6 +362,7 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca ``` === "CLI API" + ```bash curl -X POST "https://api.ultralytics.com/v1/predict/MODEL_ID" \ -H "x-api-key: API_KEY" \ @@ -363,6 +373,7 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca ``` === "Python API" + ```python import requests @@ -384,6 +395,7 @@ YOLO pose models, such as `yolov8n-pose.pt`, can return JSON responses from loca ``` === "JSON Response" + Note COCO-keypoints pretrained models will have 17 human keypoints. The `visible` part of the keypoints indicates whether a keypoint is visible or obscured. Obscured keypoints may be outside the image or may not be visible, i.e. a person's eyes facing away from the camera. ```json { diff --git a/docs/en/integrations/weights-biases.md b/docs/en/integrations/weights-biases.md index e2990ff2111..6a69a18b67a 100644 --- a/docs/en/integrations/weights-biases.md +++ b/docs/en/integrations/weights-biases.md @@ -46,6 +46,7 @@ Start by initializing the Weights & Biases environment in your workspace. You ca !!! Tip "Initial SDK Setup" === "CLI" + ```bash # Initialize your Weights & Biases environment import wandb diff --git a/docs/en/models/fast-sam.md b/docs/en/models/fast-sam.md index 16d8453b732..5e881d6ff08 100644 --- a/docs/en/models/fast-sam.md +++ b/docs/en/models/fast-sam.md @@ -50,6 +50,7 @@ To perform object detection on an image, use the `predict` method as shown below !!! Example === "Python" + ```python from ultralytics import FastSAM from ultralytics.models.fastsam import FastSAMPrompt @@ -83,6 +84,7 @@ To perform object detection on an image, use the `predict` method as shown below ``` === "CLI" + ```bash # Load a FastSAM model and segment everything with it yolo segment predict model=FastSAM-s.pt source=path/to/bus.jpg imgsz=640 @@ -97,6 +99,7 @@ Validation of the model on a dataset can be done as follows: !!! Example === "Python" + ```python from ultralytics import FastSAM @@ -108,6 +111,7 @@ Validation of the model on a dataset can be done as follows: ``` === "CLI" + ```bash # Load a FastSAM model and validate it on the COCO8 example dataset at image size 640 yolo segment val model=FastSAM-s.pt data=coco8.yaml imgsz=640 diff --git a/docs/en/models/mobile-sam.md b/docs/en/models/mobile-sam.md index 51700f6a4f3..dfed1dda7c8 100644 --- a/docs/en/models/mobile-sam.md +++ b/docs/en/models/mobile-sam.md @@ -72,6 +72,7 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo !!! Example === "Python" + ```python from ultralytics import SAM @@ -87,6 +88,7 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo !!! Example === "Python" + ```python from ultralytics import SAM diff --git a/docs/en/models/sam.md b/docs/en/models/sam.md index 7b9135b3229..654726d41c0 100644 --- a/docs/en/models/sam.md +++ b/docs/en/models/sam.md @@ -148,6 +148,7 @@ Tests run on a 2023 Apple M2 Macbook with 16GB of RAM. To reproduce this test: !!! Example === "Python" + ```python from ultralytics import FastSAM, SAM, YOLO @@ -183,6 +184,7 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno !!! Example === "Python" + ```python from ultralytics.data.annotator import auto_annotate diff --git a/docs/en/models/yolov5.md b/docs/en/models/yolov5.md index 50accac02c0..af43d321cd3 100644 --- a/docs/en/models/yolov5.md +++ b/docs/en/models/yolov5.md @@ -97,6 +97,7 @@ If you use YOLOv5 or YOLOv5u in your research, please cite the Ultralytics YOLOv !!! Quote "" === "BibTeX" + ```bibtex @software{yolov5, title = {Ultralytics YOLOv5}, diff --git a/docs/en/modes/benchmark.md b/docs/en/modes/benchmark.md index c845c621e15..1322d05686f 100644 --- a/docs/en/modes/benchmark.md +++ b/docs/en/modes/benchmark.md @@ -62,6 +62,7 @@ Run YOLOv8n benchmarks on all supported export formats including ONNX, TensorRT # Benchmark on GPU benchmark(model='yolov8n.pt', data='coco8.yaml', imgsz=640, half=False, device=0) ``` + === "CLI" ```bash diff --git a/docs/en/modes/export.md b/docs/en/modes/export.md index 29993918e04..55e6214c9b2 100644 --- a/docs/en/modes/export.md +++ b/docs/en/modes/export.md @@ -62,6 +62,7 @@ Export a YOLOv8n model to a different format like ONNX or TensorRT. See Argument # Export the model model.export(format='onnx') ``` + === "CLI" ```bash diff --git a/docs/en/modes/predict.md b/docs/en/modes/predict.md index a2bb61582ba..07c1ce98db4 100644 --- a/docs/en/modes/predict.md +++ b/docs/en/modes/predict.md @@ -53,6 +53,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m !!! Example "Predict" === "Return a list with `stream=False`" + ```python from ultralytics import YOLO @@ -71,6 +72,7 @@ Ultralytics YOLO models return either a Python list of `Results` objects, or a m ``` === "Return a generator with `stream=True`" + ```python from ultralytics import YOLO @@ -118,6 +120,7 @@ Below are code examples for using each source type: !!! Example "Prediction sources" === "image" + Run inference on an image file. ```python from ultralytics import YOLO @@ -133,6 +136,7 @@ Below are code examples for using each source type: ``` === "screenshot" + Run inference on the current screen content as a screenshot. ```python from ultralytics import YOLO @@ -148,6 +152,7 @@ Below are code examples for using each source type: ``` === "URL" + Run inference on an image or video hosted remotely via URL. ```python from ultralytics import YOLO @@ -163,6 +168,7 @@ Below are code examples for using each source type: ``` === "PIL" + Run inference on an image opened with Python Imaging Library (PIL). ```python from PIL import Image @@ -179,6 +185,7 @@ Below are code examples for using each source type: ``` === "OpenCV" + Run inference on an image read with OpenCV. ```python import cv2 @@ -195,6 +202,7 @@ Below are code examples for using each source type: ``` === "numpy" + Run inference on an image represented as a numpy array. ```python import numpy as np @@ -211,6 +219,7 @@ Below are code examples for using each source type: ``` === "torch" + Run inference on an image represented as a PyTorch tensor. ```python import torch @@ -227,6 +236,7 @@ Below are code examples for using each source type: ``` === "CSV" + Run inference on a collection of images, URLs, videos and directories listed in a CSV file. ```python import torch @@ -243,6 +253,7 @@ Below are code examples for using each source type: ``` === "video" + Run inference on a video file. By using `stream=True`, you can create a generator of Results objects to reduce memory usage. ```python from ultralytics import YOLO @@ -258,6 +269,7 @@ Below are code examples for using each source type: ``` === "directory" + Run inference on all images and videos in a directory. To also capture images and videos in subdirectories use a glob pattern, i.e. `path/to/dir/**/*`. ```python from ultralytics import YOLO @@ -273,6 +285,7 @@ Below are code examples for using each source type: ``` === "glob" + Run inference on all images and videos that match a glob expression with `*` characters. ```python from ultralytics import YOLO @@ -291,6 +304,7 @@ Below are code examples for using each source type: ``` === "YouTube" + Run inference on a YouTube video. By using `stream=True`, you can create a generator of Results objects to reduce memory usage for long videos. ```python from ultralytics import YOLO @@ -306,6 +320,7 @@ Below are code examples for using each source type: ``` === "Streams" + Run inference on remote streaming sources using RTSP, RTMP, TCP and IP address protocols. If multiple streams are provided in a `*.streams` text file then batched inference will run, i.e. 8 streams will run at batch-size 8, otherwise single streams will run at batch-size 1. ```python from ultralytics import YOLO @@ -384,16 +399,16 @@ The below table contains valid Ultralytics image formats. | Image Suffixes | Example Predict Command | Reference | |----------------|----------------------------------|-------------------------------------------------------------------------------| -| .bmp | `yolo predict source=image.bmp` | [Microsoft BMP File Format](https://en.wikipedia.org/wiki/BMP_file_format) | -| .dng | `yolo predict source=image.dng` | [Adobe DNG](https://www.adobe.com/products/photoshop/extend.displayTab2.html) | -| .jpeg | `yolo predict source=image.jpeg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) | -| .jpg | `yolo predict source=image.jpg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) | -| .mpo | `yolo predict source=image.mpo` | [Multi Picture Object](https://fileinfo.com/extension/mpo) | -| .png | `yolo predict source=image.png` | [Portable Network Graphics](https://en.wikipedia.org/wiki/PNG) | -| .tif | `yolo predict source=image.tif` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) | -| .tiff | `yolo predict source=image.tiff` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) | -| .webp | `yolo predict source=image.webp` | [WebP](https://en.wikipedia.org/wiki/WebP) | -| .pfm | `yolo predict source=image.pfm` | [Portable FloatMap](https://en.wikipedia.org/wiki/Netpbm#File_formats) | +| `.bmp` | `yolo predict source=image.bmp` | [Microsoft BMP File Format](https://en.wikipedia.org/wiki/BMP_file_format) | +| `.dng` | `yolo predict source=image.dng` | [Adobe DNG](https://www.adobe.com/products/photoshop/extend.displayTab2.html) | +| `.jpeg` | `yolo predict source=image.jpeg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) | +| `.jpg` | `yolo predict source=image.jpg` | [JPEG](https://en.wikipedia.org/wiki/JPEG) | +| `.mpo` | `yolo predict source=image.mpo` | [Multi Picture Object](https://fileinfo.com/extension/mpo) | +| `.png` | `yolo predict source=image.png` | [Portable Network Graphics](https://en.wikipedia.org/wiki/PNG) | +| `.tif` | `yolo predict source=image.tif` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) | +| `.tiff` | `yolo predict source=image.tiff` | [Tag Image File Format](https://en.wikipedia.org/wiki/TIFF) | +| `.webp` | `yolo predict source=image.webp` | [WebP](https://en.wikipedia.org/wiki/WebP) | +| `.pfm` | `yolo predict source=image.pfm` | [Portable FloatMap](https://en.wikipedia.org/wiki/Netpbm#File_formats) | ### Videos @@ -401,18 +416,18 @@ The below table contains valid Ultralytics video formats. | Video Suffixes | Example Predict Command | Reference | |----------------|----------------------------------|----------------------------------------------------------------------------------| -| .asf | `yolo predict source=video.asf` | [Advanced Systems Format](https://en.wikipedia.org/wiki/Advanced_Systems_Format) | -| .avi | `yolo predict source=video.avi` | [Audio Video Interleave](https://en.wikipedia.org/wiki/Audio_Video_Interleave) | -| .gif | `yolo predict source=video.gif` | [Graphics Interchange Format](https://en.wikipedia.org/wiki/GIF) | -| .m4v | `yolo predict source=video.m4v` | [MPEG-4 Part 14](https://en.wikipedia.org/wiki/M4V) | -| .mkv | `yolo predict source=video.mkv` | [Matroska](https://en.wikipedia.org/wiki/Matroska) | -| .mov | `yolo predict source=video.mov` | [QuickTime File Format](https://en.wikipedia.org/wiki/QuickTime_File_Format) | -| .mp4 | `yolo predict source=video.mp4` | [MPEG-4 Part 14 - Wikipedia](https://en.wikipedia.org/wiki/MPEG-4_Part_14) | -| .mpeg | `yolo predict source=video.mpeg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) | -| .mpg | `yolo predict source=video.mpg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) | -| .ts | `yolo predict source=video.ts` | [MPEG Transport Stream](https://en.wikipedia.org/wiki/MPEG_transport_stream) | -| .wmv | `yolo predict source=video.wmv` | [Windows Media Video](https://en.wikipedia.org/wiki/Windows_Media_Video) | -| .webm | `yolo predict source=video.webm` | [WebM Project](https://en.wikipedia.org/wiki/WebM) | +| `.asf` | `yolo predict source=video.asf` | [Advanced Systems Format](https://en.wikipedia.org/wiki/Advanced_Systems_Format) | +| `.avi` | `yolo predict source=video.avi` | [Audio Video Interleave](https://en.wikipedia.org/wiki/Audio_Video_Interleave) | +| `.gif` | `yolo predict source=video.gif` | [Graphics Interchange Format](https://en.wikipedia.org/wiki/GIF) | +| `.m4v` | `yolo predict source=video.m4v` | [MPEG-4 Part 14](https://en.wikipedia.org/wiki/M4V) | +| `.mkv` | `yolo predict source=video.mkv` | [Matroska](https://en.wikipedia.org/wiki/Matroska) | +| `.mov` | `yolo predict source=video.mov` | [QuickTime File Format](https://en.wikipedia.org/wiki/QuickTime_File_Format) | +| `.mp4` | `yolo predict source=video.mp4` | [MPEG-4 Part 14 - Wikipedia](https://en.wikipedia.org/wiki/MPEG-4_Part_14) | +| `.mpeg` | `yolo predict source=video.mpeg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) | +| `.mpg` | `yolo predict source=video.mpg` | [MPEG-1 Part 2](https://en.wikipedia.org/wiki/MPEG-1) | +| `.ts` | `yolo predict source=video.ts` | [MPEG Transport Stream](https://en.wikipedia.org/wiki/MPEG_transport_stream) | +| `.wmv` | `yolo predict source=video.wmv` | [Windows Media Video](https://en.wikipedia.org/wiki/Windows_Media_Video) | +| `.webm` | `yolo predict source=video.webm` | [WebM Project](https://en.wikipedia.org/wiki/WebM) | ## Working with Results diff --git a/docs/en/modes/train.md b/docs/en/modes/train.md index 331d7cdd378..c9f3e09bba0 100644 --- a/docs/en/modes/train.md +++ b/docs/en/modes/train.md @@ -241,6 +241,7 @@ To use Comet: !!! Example === "Python" + ```python # pip install comet_ml import comet_ml @@ -259,6 +260,7 @@ To use ClearML: !!! Example === "Python" + ```python # pip install clearml import clearml @@ -277,6 +279,7 @@ To use TensorBoard in [Google Colab](https://colab.research.google.com/github/ul !!! Example === "CLI" + ```bash load_ext tensorboard tensorboard --logdir ultralytics/runs # replace with 'runs' directory @@ -287,6 +290,7 @@ To use TensorBoard locally run the below command and view results at http://loca !!! Example === "CLI" + ```bash tensorboard --logdir ultralytics/runs # replace with 'runs' directory ``` diff --git a/docs/en/modes/val.md b/docs/en/modes/val.md index d9e2c96a6be..626aa7b9d0c 100644 --- a/docs/en/modes/val.md +++ b/docs/en/modes/val.md @@ -67,6 +67,7 @@ Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need metrics.box.map75 # map75 metrics.box.maps # a list contains map50-95 of each category ``` + === "CLI" ```bash diff --git a/docs/en/quickstart.md b/docs/en/quickstart.md index 865520b2288..3ea839a5494 100644 --- a/docs/en/quickstart.md +++ b/docs/en/quickstart.md @@ -22,6 +22,7 @@ Ultralytics provides various installation methods including pip, conda, and Dock !!! Example "Install" === "Pip install (recommended)" + Install the `ultralytics` package using pip, or update an existing installation by running `pip install -U ultralytics`. Visit the Python Package Index (PyPI) for more details on the `ultralytics` package: [https://pypi.org/project/ultralytics/](https://pypi.org/project/ultralytics/). [![PyPI version](https://badge.fury.io/py/ultralytics.svg)](https://badge.fury.io/py/ultralytics) [![Downloads](https://static.pepy.tech/badge/ultralytics)](https://pepy.tech/project/ultralytics) @@ -38,8 +39,8 @@ Ultralytics provides various installation methods including pip, conda, and Dock pip install git+https://github.com/ultralytics/ultralytics.git@main ``` - === "Conda install" + Conda is an alternative package manager to pip which may also be used for installation. Visit Anaconda for more details at [https://anaconda.org/conda-forge/ultralytics](https://anaconda.org/conda-forge/ultralytics). Ultralytics feedstock repository for updating the conda package is at [https://github.com/conda-forge/ultralytics-feedstock/](https://github.com/conda-forge/ultralytics-feedstock/). diff --git a/docs/en/tasks/pose.md b/docs/en/tasks/pose.md index 401459d4572..44db387f053 100644 --- a/docs/en/tasks/pose.md +++ b/docs/en/tasks/pose.md @@ -64,6 +64,7 @@ Train a YOLOv8-pose model on the COCO128-pose dataset. # Train the model results = model.train(data='coco8-pose.yaml', epochs=100, imgsz=640) ``` + === "CLI" ```bash diff --git a/docs/en/usage/cli.md b/docs/en/usage/cli.md index 98b2dbbde33..62b79e43b30 100644 --- a/docs/en/usage/cli.md +++ b/docs/en/usage/cli.md @@ -193,18 +193,21 @@ Default arguments can be overridden by simply passing them as arguments in the C !!! Tip "" === "Train" + Train a detection model for `10 epochs` with `learning_rate` of `0.01` ```bash yolo detect train data=coco128.yaml model=yolov8n.pt epochs=10 lr0=0.01 ``` === "Predict" + Predict a YouTube video using a pretrained segmentation model at image size 320: ```bash yolo segment predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320 ``` === "Val" + Validate a pretrained detection model at batch-size 1 and image size 640: ```bash yolo detect val model=yolov8n.pt data=coco128.yaml batch=1 imgsz=640 @@ -221,6 +224,7 @@ This will create `default_copy.yaml`, which you can then pass as `cfg=default_co !!! Example === "CLI" + ```bash yolo copy-cfg yolo cfg=default_copy.yaml imgsz=320 diff --git a/docs/en/usage/python.md b/docs/en/usage/python.md index ac5a712b6fe..2659907a7b0 100644 --- a/docs/en/usage/python.md +++ b/docs/en/usage/python.md @@ -52,6 +52,7 @@ Train mode is used for training a YOLOv8 model on a custom dataset. In this mode !!! Example "Train" === "From pretrained(recommended)" + ```python from ultralytics import YOLO @@ -60,6 +61,7 @@ Train mode is used for training a YOLOv8 model on a custom dataset. In this mode ``` === "From scratch" + ```python from ultralytics import YOLO @@ -68,6 +70,7 @@ Train mode is used for training a YOLOv8 model on a custom dataset. In this mode ``` === "Resume" + ```python model = YOLO("last.pt") results = model.train(resume=True) @@ -82,6 +85,7 @@ Val mode is used for validating a YOLOv8 model after it has been trained. In thi !!! Example "Val" === "Val after training" + ```python from ultralytics import YOLO @@ -91,6 +95,7 @@ Val mode is used for validating a YOLOv8 model after it has been trained. In thi ``` === "Val independently" + ```python from ultralytics import YOLO @@ -110,6 +115,7 @@ Predict mode is used for making predictions using a trained YOLOv8 model on new !!! Example "Predict" === "From source" + ```python from ultralytics import YOLO from PIL import Image @@ -133,6 +139,7 @@ Predict mode is used for making predictions using a trained YOLOv8 model on new ``` === "Results usage" + ```python # results would be a list of Results object including all the predictions by default # but be careful as it could occupy a lot memory when there're many images,