From 99654e18895be5be34d4016be89685e44adffbf3 Mon Sep 17 00:00:00 2001
From: Thor Whalen <1906276+thorwhalen@users.noreply.github.com>
Date: Mon, 4 Nov 2024 14:12:50 +0100
Subject: [PATCH] fix: readme images
---
README.md | 26 +++++++++++++-------------
1 file changed, 13 insertions(+), 13 deletions(-)
diff --git a/README.md b/README.md
index a0c9d7e..89f9700 100644
--- a/README.md
+++ b/README.md
@@ -41,7 +41,7 @@ taking an ax as input and drawing something on it.
For example:
-
+
```
from oplot import ax_func_to_plot
@@ -93,7 +93,7 @@ y = [sigmoid_map(i) for i in x]
plt.plot(x, y)
```
-
+
# outlier_scores.py
@@ -107,7 +107,7 @@ from oplot import plot_scores_and_zones
scores = np.random.random(200)
plot_scores_and_zones(scores, zones=[0, 0.25, 0.5, 0.9])
```
-
+
find_prop_markers, get_confusion_zone_percentiles and get_confusion_zones_std provides tools
to find statistically meaningfull zones.
@@ -124,7 +124,7 @@ b) the aligned spectra
Parameters allows to add vertical markers to the plot like in the example below.
-
+
# plot_data_set.py
@@ -211,7 +211,7 @@ scatter_and_color_according_to_y(X, y,
-
+
```
from oplot import scatter_and_color_according_to_y
@@ -222,7 +222,7 @@ scatter_and_color_according_to_y(X, y,
```
-
+
There is also that little one, which I don't remeber ever using and needs some work:
@@ -232,7 +232,7 @@ from oplot import side_by_side_bar
side_by_side_bar([[1,2,3], [4,5,6]], list_names=['you', 'me'])
```
-
+
## plot_stats.py
@@ -257,7 +257,7 @@ y[:50] = (y[:50] + 1) % 4
plot_confusion_matrix(y, truth)
```
-
+
make_normal_outlier_timeline plots the scores with a color/legend given by
the aligned list truth
@@ -270,7 +270,7 @@ tags = np.array(['normal'] * 20 + ['outlier'] * 15 + ['crazy'] * (len(scores) -
make_normal_outlier_timeline(tags, scores)
```
-
+
make_tables_tn_fp_fn_tp is convenient to obtain True Positive and False Negative
@@ -283,7 +283,7 @@ scores = np.arange(-1, 3, 0.1)
truth = scores > 2.5
make_tables_tn_fp_fn_tp(truth, scores)
```
-
+
render_mpl_table takes any pandas dataframe and turn it into a pretty plot
which can then be saved as a pdf for example.
@@ -296,7 +296,7 @@ truth = scores > 2.5
df = make_tables_tn_fp_fn_tp(truth, scores)
render_mpl_table(df)
```
-
+
plot_outlier_metric_curve plots ROC type. You specify which pair of statistics
you want to display along with a list of scores and truth (0 for negative, 1 for positive).
@@ -313,7 +313,7 @@ pair_metrics={'x': 'recall', 'y': 'precision'}
plot_outlier_metric_curve(truth, scores,
pair_metrics=pair_metrics)
```
-
+
There are many choices for the statistics to display, some pairs making more or
@@ -326,7 +326,7 @@ pair_metrics={'x': 'false_positive_rate', 'y': 'false_negative_rate'}
plot_outlier_metric_curve(truth, scores,
pair_metrics=pair_metrics)
```
-
+