From 99654e18895be5be34d4016be89685e44adffbf3 Mon Sep 17 00:00:00 2001 From: Thor Whalen <1906276+thorwhalen@users.noreply.github.com> Date: Mon, 4 Nov 2024 14:12:50 +0100 Subject: [PATCH] fix: readme images --- README.md | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/README.md b/README.md index a0c9d7e..89f9700 100644 --- a/README.md +++ b/README.md @@ -41,7 +41,7 @@ taking an ax as input and drawing something on it. For example: -![](https://github.com/i2mint/oplot/readme_plots/Screen_Shot_2021-01-06_at_06.23.21.png) +![](https://github.com/i2mint/oplot/blob/master/readme_plots/Screen_Shot_2021-01-06_at_06.23.21.png) ``` from oplot import ax_func_to_plot @@ -93,7 +93,7 @@ y = [sigmoid_map(i) for i in x] plt.plot(x, y) ``` - + # outlier_scores.py @@ -107,7 +107,7 @@ from oplot import plot_scores_and_zones scores = np.random.random(200) plot_scores_and_zones(scores, zones=[0, 0.25, 0.5, 0.9]) ``` - + find_prop_markers, get_confusion_zone_percentiles and get_confusion_zones_std provides tools to find statistically meaningfull zones. @@ -124,7 +124,7 @@ b) the aligned spectra Parameters allows to add vertical markers to the plot like in the example below. - + # plot_data_set.py @@ -211,7 +211,7 @@ scatter_and_color_according_to_y(X, y, - + ``` from oplot import scatter_and_color_according_to_y @@ -222,7 +222,7 @@ scatter_and_color_according_to_y(X, y, ``` - + There is also that little one, which I don't remeber ever using and needs some work: @@ -232,7 +232,7 @@ from oplot import side_by_side_bar side_by_side_bar([[1,2,3], [4,5,6]], list_names=['you', 'me']) ``` - + ## plot_stats.py @@ -257,7 +257,7 @@ y[:50] = (y[:50] + 1) % 4 plot_confusion_matrix(y, truth) ``` - + make_normal_outlier_timeline plots the scores with a color/legend given by the aligned list truth @@ -270,7 +270,7 @@ tags = np.array(['normal'] * 20 + ['outlier'] * 15 + ['crazy'] * (len(scores) - make_normal_outlier_timeline(tags, scores) ``` - + make_tables_tn_fp_fn_tp is convenient to obtain True Positive and False Negative @@ -283,7 +283,7 @@ scores = np.arange(-1, 3, 0.1) truth = scores > 2.5 make_tables_tn_fp_fn_tp(truth, scores) ``` - + render_mpl_table takes any pandas dataframe and turn it into a pretty plot which can then be saved as a pdf for example. @@ -296,7 +296,7 @@ truth = scores > 2.5 df = make_tables_tn_fp_fn_tp(truth, scores) render_mpl_table(df) ``` - + plot_outlier_metric_curve plots ROC type. You specify which pair of statistics you want to display along with a list of scores and truth (0 for negative, 1 for positive). @@ -313,7 +313,7 @@ pair_metrics={'x': 'recall', 'y': 'precision'} plot_outlier_metric_curve(truth, scores, pair_metrics=pair_metrics) ``` - + There are many choices for the statistics to display, some pairs making more or @@ -326,7 +326,7 @@ pair_metrics={'x': 'false_positive_rate', 'y': 'false_negative_rate'} plot_outlier_metric_curve(truth, scores, pair_metrics=pair_metrics) ``` - +