forked from tanjeffreyz/auto-maple
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetection.py
193 lines (157 loc) · 6.54 KB
/
detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""A module for classifying directional arrows using TensorFlow."""
import utils
import cv2
import tensorflow as tf
import numpy as np
#########################
# Functions #
#########################
def load_model():
"""
Loads the saved model's weights into an Tensorflow model.
:return: The Tensorflow model object.
"""
model_dir = f'assets/models/rune_model_rnn_filtered_cannied/saved_model'
return tf.saved_model.load(model_dir)
def canny(image):
"""
Performs Canny edge detection on IMAGE.
:param image: The input image as a Numpy array.
:return: The edges in IMAGE.
"""
image = cv2.Canny(image, 200, 300)
colored = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
return colored
def filter_color(image):
"""
Filters out all colors not between orange and green on the HSV scale, which
eliminates some noise around the arrows.
:param image: The input image.
:return: The color-filtered image.
"""
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv, (1, 100, 100), (75, 255, 255))
# Mask the image
color_mask = mask > 0
arrows = np.zeros_like(image, np.uint8)
arrows[color_mask] = image[color_mask]
return arrows
def run_inference_for_single_image(model, image):
"""
Performs an inference once.
:param model: The model object to use.
:param image: The input image.
:return: The model's predictions including bounding boxes and classes.
"""
image = np.asarray(image)
input_tensor = tf.convert_to_tensor(image)
input_tensor = input_tensor[tf.newaxis,...]
model_fn = model.signatures['serving_default']
output_dict = model_fn(input_tensor)
num_detections = int(output_dict.pop('num_detections'))
output_dict = {key: value[0,:num_detections].numpy()
for key, value in output_dict.items()}
output_dict['num_detections'] = num_detections
output_dict['detection_classes'] = output_dict['detection_classes'].astype(np.int64)
return output_dict
def sort_by_confidence(model, image):
"""
Runs a single inference on the image and returns the best four classifications.
:param model: The model object to use.
:param image: The input image.
:return: The model's top four predictions.
"""
output_dict = run_inference_for_single_image(model, image)
zipped = list(zip(output_dict['detection_scores'],
output_dict['detection_boxes'],
output_dict['detection_classes']))
pruned = [t for t in zipped if t[0] > 0.5]
pruned.sort(key=lambda x: x[0], reverse=True)
result = pruned[:4]
return result
def get_boxes(model, image):
"""
Returns the bounding boxes of the top four classified arrows.
:param model: The model object to predict with.
:param image: The input image.
:return: Up to four bounding boxes.
"""
output_dict = run_inference_for_single_image(model, image)
zipped = list(zip(output_dict['detection_scores'],
output_dict['detection_boxes'],
output_dict['detection_classes']))
pruned = [t for t in zipped if t[0] > 0.5]
pruned.sort(key=lambda x: x[0], reverse=True)
pruned = pruned[:4]
boxes = [t[1:] for t in pruned]
return boxes
@utils.run_if_enabled
def merge_detection(model, image):
"""
Run two inferences: one on the upright image, and one on the image rotated 90 degrees.
Only considers vertical arrows and merges the results of the two inferences together.
(Vertical arrows in the rotated image are actually horizontal arrows).
:param model: The model object to use.
:param image: The input image.
:return: A list of four arrow directions.
"""
label_map = {1: 'up', 2: 'down', 3: 'left', 4: 'right'}
converter = {'up': 'right', 'down': 'left'} # For the 'rotated inferences'
classes = []
# Preprocessing
height, width, channels = image.shape
cropped = image[120:height//2, width//4:3*width//4]
filtered = filter_color(cropped)
cannied = canny(filtered)
# Isolate the rune box
height, width, channels = cannied.shape
boxes = get_boxes(model, cannied)
if len(boxes) == 4: # Only run further inferences if arrows have been correctly detected
y_mins = [b[0][0] for b in boxes]
x_mins = [b[0][1] for b in boxes]
y_maxes = [b[0][2] for b in boxes]
x_maxes = [b[0][3] for b in boxes]
left = int(round(min(x_mins) * width))
right = int(round(max(x_maxes) * width))
top = int(round(min(y_mins) * height))
bottom = int(round(max(y_maxes) * height))
rune_box = cannied[top:bottom, left:right]
# Pad the rune box with black borders, effectively eliminating the noise around it
height, width, channels = rune_box.shape
pad_height, pad_width = 384, 455
preprocessed = np.full((pad_height, pad_width, channels), (0, 0, 0), dtype=np.uint8)
x_offset = (pad_width - width) // 2
y_offset = (pad_height - height) // 2
if x_offset > 0 and y_offset > 0:
preprocessed[y_offset:y_offset+height, x_offset:x_offset+width] = rune_box
# Run detection on preprocessed image
lst = sort_by_confidence(model, preprocessed)
lst.sort(key=lambda x: x[1][1])
classes = [label_map[item[2]] for item in lst]
# Run detection on rotated image
rotated = cv2.rotate(preprocessed, cv2.ROTATE_90_COUNTERCLOCKWISE)
lst = sort_by_confidence(model, rotated)
lst.sort(key=lambda x: x[1][2], reverse=True)
rotated_classes = [converter[label_map[item[2]]]
for item in lst
if item[2] in [1, 2]]
# Merge the two detection results
for i in range(len(classes)):
if rotated_classes and classes[i] in ['left', 'right']:
classes[i] = rotated_classes.pop(0)
return classes
# Script for testing the detection module by itself
if __name__ == '__main__':
import config
import mss
config.enabled = True
monitor = {'top': 0, 'left': 0, 'width': 1366, 'height': 768}
model = load_model()
while True:
with mss.mss() as sct:
frame = np.array(sct.grab(monitor))
cv2.imshow('frame', canny(filter_color(frame)))
arrows = merge_detection(model, frame)
print(arrows)
if cv2.waitKey(1) & 0xFF == 27: # 27 is ASCII for the Esc key
break