-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
242 lines (205 loc) · 6.56 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import argparse
import numpy as np
from pathlib import Path
# ML imports
from torch.nn import CrossEntropyLoss
from torch.optim import SGD
from avalanche.benchmarks.classic import PermutedMNIST, RotatedMNIST
# Local imports
from src import utils, models
# Continual Learning strategies
from avalanche.training import Naive, Replay, EWC, plugins
from src.strategies import LatentReplay, GenerativeLatentReplay
# Helper functions
def get_model(model_name):
if model_name == "alexnet":
model = models.alexnet()
elif model_name == "mobilenet":
model = models.mobilenetv2()
elif model_name == "mlp":
model = models.SimpleMLP()
elif model_name == "cnn":
model = models.SimpleCNN()
return model
def get_experiences(experiment, n_experiences, transform):
if experiment == "PermutedMNIST":
experiences = PermutedMNIST(
n_experiences=n_experiences,
train_transform=transform,
eval_transform=transform,
seed=args.SEED,
)
elif experiment == "RotatedMNIST":
rotations = list(np.linspace(0, 360, n_experiences + 1, dtype=int))[:-1]
experiences = RotatedMNIST(
n_experiences=n_experiences,
train_transform=transform,
eval_transform=transform,
seed=args.SEED,
rotations_list=rotations,
)
else:
raise ValueError("Experiment not implemented")
return experiences
def get_strategy(
strategy_name,
model,
experiment,
sgd_kwargs,
strategy_kwargs,
replay_buffer_size,
latent_layer_number,
):
if strategy_name == "Latent Replay":
strategy = LatentReplay(
model=model,
rm_sz=replay_buffer_size,
latent_layer_num=latent_layer_number,
evaluator=utils.get_eval_plugin(strategy_name, experiment),
**strategy_kwargs,
**sgd_kwargs,
)
elif strategy_name == "GLR":
# Loading GLR model
strategy = GenerativeLatentReplay(
model=model,
rm_sz=replay_buffer_size,
latent_layer_num=latent_layer_number,
evaluator=utils.get_eval_plugin(strategy_name, experiment),
**strategy_kwargs,
**sgd_kwargs,
)
elif strategy_name == "Naive":
# Loading baseline (naive) model
strategy = Naive(
model=model,
optimizer=SGD(model.parameters(), **sgd_kwargs),
evaluator=utils.get_eval_plugin(strategy_name, experiment),
**strategy_kwargs,
)
elif strategy_name == "Replay":
# Loading benchmark (replay) model
strategy = Replay(
model=model,
criterion=CrossEntropyLoss(),
optimizer=SGD(model.parameters(), **sgd_kwargs),
evaluator=utils.get_eval_plugin(strategy_name, experiment),
**strategy_kwargs,
)
elif strategy_name == "EWC":
# Loading benchmark (replay) model
strategy = EWC(
model=model,
criterion=CrossEntropyLoss(),
optimizer=SGD(model.parameters(), **sgd_kwargs),
evaluator=utils.get_eval_plugin(strategy_name, experiment),
ewc_lambda=1,
**strategy_kwargs,
)
else:
raise ValueError("Strategy not implemented")
return strategy
def main(args):
# Reproducibility
utils.set_seed(args.SEED)
# Reporting
eval_rate = 1
# Problem definition
# Number of tasks
n_experiences = 5
# Transform data to format expected by model
transform = utils.get_transforms(resize=244, n_channels=3, normalise=True)
# Load dataset
experiences = get_experiences(args.experiment, n_experiences, transform)
# Train and test streams
train_stream = experiences.train_stream
test_stream = experiences.test_stream
# Hyperparameters
# Replays
replay_buffer_size = args.buffer_size
# Frozen backbone
if args.latent_layer is None:
if args.model == "alexnet":
latent_layer_number = 16
elif args.model == "mobilenet":
latent_layer_number = 158
else:
latent_layer_number = args.latent_layer
# SGD hyperparams
sgd_kwargs = {
"lr": 0.001, # 0.1, # 0.001
"momentum": 0.9,
"weight_decay": 0.0005, # l2 regularization
}
strategy_kwargs = {
"eval_every": 1,
"train_epochs": 40,
"train_mb_size": 64,
"eval_mb_size": 128,
"device": utils.get_device(),
"plugins": [
plugins.EarlyStoppingPlugin(
patience=eval_rate,
val_stream_name="train_stream/Task000",
margin=0.003, # metric
)
],
}
# Building base model
model = get_model(args.model)
# Loading Continual Learning strategies for experiments
# Training loop
strategy = get_strategy(
args.strategy,
model,
args.experiment,
sgd_kwargs,
strategy_kwargs,
replay_buffer_size,
latent_layer_number,
)
# rotations_list=[0, 60, 300],
for train_exp in train_stream:
strategy.train(train_exp, eval_streams=[train_exp])
strategy.eval(train_stream)
strategy.eval(test_stream)
utils.save_model(
strategy.model,
Path(f"results/{args.experiment}/{args.strategy}"),
f"model_{train_exp.current_experience}.pt",
)
# plotting.plot_multiple_results()
# plotting.results_to_df()
if __name__ == "__main__":
strats = ["Latent Replay", "GLR", "Naive", "Replay", "EWC"]
parser = argparse.ArgumentParser()
parser.add_argument(
"--strategy",
type=str,
default="GLR",
help="Strategy to use",
choices=strats + ["all"],
)
parser.add_argument(
"--model",
type=str,
default="alexnet",
choices=["alexnet", "mobilenet", "efficientnet", "lenet", "mlp", "cnn"],
)
parser.add_argument(
"--experiment",
type=str,
default="PermutedMNIST",
choices=["PermutedMNIST", "RotatedMNIST"],
)
parser.add_argument("--SEED", type=int, default=43769)
parser.add_argument("--latent_layer", type=int, default=None)
parser.add_argument("--pretrained", action=argparse.BooleanOptionalAction)
parser.add_argument("--buffer_size", type=int, default=6000)
args = parser.parse_args()
if args.strategy == "all":
for strategy in strats:
args.strategy = strategy
main(args)
else:
main(args)