-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtwo-sequence-queries.cpp
148 lines (122 loc) · 3.29 KB
/
two-sequence-queries.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
using ll = long long;
const ll MOD = 998244353;
inline ll sum(const ll a, const ll b) {
return (a + b) % MOD;
}
ll sub(const ll a, const ll b) {
return (a - b + MOD) % MOD;
}
inline ll mul(const ll a, const ll b) {
return (a * b) % MOD;
}
struct SqrtDecomposition {
struct t_sqrt {
int l, r;
ll x, y;
ll prod;
ll sum_as, sum_bs;
t_sqrt() {
l = numeric_limits<int>::max();
r = numeric_limits<int>::min();
x = y = prod = sum_as = sum_bs = 0;
};
};
int sqrtLen;
vector<t_sqrt> blocks;
vector<ll> as, bs;
SqrtDecomposition(const vector<ll> &as_,
const vector<ll> &bs_) {
int n = as_.size();
sqrtLen = (int)sqrt(n + .0) + 1;
blocks.resize(sqrtLen + 6.66);
as = as_;
bs = bs_;
for (int i = 0; i < n; i++) {
auto &bi = blocks[i / sqrtLen];
bi.l = min(bi.l, i);
bi.r = max(bi.r, i);
bi.sum_as = sum(bi.sum_as, as[i]);
bi.sum_bs = sum(bi.sum_bs, bs[i]);
bi.prod = sum(bi.prod, mul(as[i], bs[i]));
}
}
// adds x to a[i], and y to b[i], in range [l,
// r]
void update(int l, int r, ll x, ll y) {
auto apply1 = [&](int idx, ll x,
ll y) -> void {
auto &block = blocks[idx / sqrtLen];
block.prod =
sub(block.prod, mul(as[idx], bs[idx]));
block.sum_as = sub(block.sum_as, as[idx]);
block.sum_bs = sub(block.sum_bs, bs[idx]);
as[idx] = sum(as[idx], x);
bs[idx] = sum(bs[idx], y);
block.prod =
sum(block.prod, as[idx] * bs[idx]);
block.sum_as = sum(block.sum_as, as[idx]);
block.sum_bs = sum(block.sum_bs, bs[idx]);
};
auto apply2 = [&](int idx, ll x,
ll y) -> void {
blocks[idx].x = sum(blocks[idx].x, x);
blocks[idx].y = sum(blocks[idx].y, y);
};
int cl = l / sqrtLen, cr = r / sqrtLen;
if (cl == cr) {
for (int i = l; i <= r; i++) {
apply1(i, x, y);
}
} else {
for (int i = l; i <= (cl + 1) * sqrtLen - 1;
i++) {
apply1(i, x, y);
}
for (int i = cl + 1; i <= cr - 1; i++) {
apply2(i, x, y);
}
for (int i = cr * sqrtLen; i <= r; i++) {
apply1(i, x, y);
}
}
}
// sum of a[i]*b[i] in range [l r]
ll query(int l, int r) {
auto eval1 = [&](int idx) -> ll {
auto &block = blocks[idx / sqrtLen];
return mul(sum(as[idx], +block.x),
sum(bs[idx], block.y));
};
auto eval2 = [&](int idx) -> ll {
auto &block = blocks[idx];
ll ret = 0;
ret =
sum(ret,
mul(mul(block.x, block.y),
sum(sub(block.r, block.l), 1)));
ret = sum(ret, block.prod);
ret = sum(ret, block.y * block.sum_as);
ret = sum(ret, block.x * block.sum_bs);
return ret;
};
ll ret = 0;
int cl = l / sqrtLen, cr = r / sqrtLen;
if (cl == cr) {
for (int i = l; i <= r; i++) {
ret = sum(ret, eval1(i));
}
} else {
for (int i = l; i <= (cl + 1) * sqrtLen - 1;
i++) {
ret = sum(eval1(i), ret);
}
for (int i = cl + 1; i <= cr - 1; i++) {
ret = sum(ret, eval2(i));
}
for (int i = cr * sqrtLen; i <= r; i++) {
ret = sum(ret, eval1(i));
}
}
return ret;
}
};