From 5c4d8806f39b0ce263b055181df571934fa5c4ca Mon Sep 17 00:00:00 2001 From: iagorrr04 Date: Thu, 7 Mar 2024 15:41:39 -0300 Subject: [PATCH] :technologist: makes the 2-edge connected component accept 'complex' graphs --- .../graphs/find-bridge-tree-components.cpp | 32 ++++++++++++++----- .../graphs/find-bridge-tree-components.tex | 5 ++- 2 files changed, 28 insertions(+), 9 deletions(-) diff --git a/algorithms/graphs/find-bridge-tree-components.cpp b/algorithms/graphs/find-bridge-tree-components.cpp index 31b49c13..4a39f6e8 100644 --- a/algorithms/graphs/find-bridge-tree-components.cpp +++ b/algorithms/graphs/find-bridge-tree-components.cpp @@ -1,27 +1,43 @@ +const int maxn(3'00'000); +int tin[maxn], low[maxn], comp[maxn], qtdcomps, clk; +vi g[maxn], stck; int n; -const int MAXN(3'00'000); -vi g[MAXN], vi stck; -int tin[MAXN], low[MAXN], comp[MAXN], qtdcomps, clk; -void dfsb(int u, int p) { +void dfs(int u, int p = -1) { low[u] = tin[u] = ++clk; stck.emplace_back(u); + bool flagParent = false; for (auto v : g[u]) { if (!tin[v]) { - dfsb(v, u); + dfs(v, u); low[u] = min(low[u], low[v]); - } else if (v != p) { - low[u] = min(low[u], tin[v]); + } else { + if (v != p) + low[u] = min(low[u], tin[v]); + else { + if (flagParent) + low[u] = min(low[u], tin[v]); + else + flagParent = true; + } } } if (low[u] == tin[u]) { - qtdcomps++; int v2; do { v2 = stck.back(); comp[v2] = qtdcomps; stck.pop_back(); } while (v2 != u); + qtdcomps++; + } +} + +void label2CC() { + memset(comp, -1, sizeof(int) * n); + + for (int i = 0; i < n; i++) { + if (comp[i] == -1) dfs(i); } } diff --git a/algorithms/graphs/find-bridge-tree-components.tex b/algorithms/graphs/find-bridge-tree-components.tex index b300cde8..e9e0c603 100644 --- a/algorithms/graphs/find-bridge-tree-components.tex +++ b/algorithms/graphs/find-bridge-tree-components.tex @@ -1,5 +1,8 @@ \subsection{Find Bridge Tree Components} -$dfsb(u, p)$ finds the component of the connected coponent of u. +$label2CC(u, p)$ finds the 2-edge connected component of every node. + +notes: 0 indexed, it also works with not simple graphs. + time: $O(n + m)$