-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReferenceLinks.txt
443 lines (433 loc) · 21 KB
/
ReferenceLinks.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
各章引用网址列表
第1章 在WSL2上搭建GPU Linux Server深度学习环境
1、数里乾坤——用R与Python玩转大数据
https://zhuanlan.zhihu.com/p/640437583
2、优刻得
https://www.ucloud.cn/
3、GPU算力查询网址
https://developer.nvidia.com/cuda-gpus
4、拯救者Y9000X
https://activity.lenovo.com.cn/xiaofei/zjz/hdy.html
5、Tensorflow Linux Tested build configurations
https://tensorflow.google.cn/install/source?hl=en#linux
6、Tensorflow Winodws Tested build configurations
https://tensorflow.google.cn/install/source_windows?hl=en#gpu
7、Docker安装运行报错wsl问题排查方案
https://www.cnblogs.com/bokemoqi/p/17926296.html
8、Windows10/11家庭版开启Hyper-V虚拟机功能详解
https://zhuanlan.zhihu.com/p/667571538
9、WSL Github主页
https://github.com/microsoft/WSL
10、wsl.2.4.11.0.x64 下载地址
https://github.com/microsoft/WSL/releases/download/2.4.11/wsl.2.4.11.0.x64.msi
11、WSL 使用教程
https://www.jianshu.com/p/39a5b2e002b6
12、Getting Started with CUDA on WSL 2
https://docs.nvidia.com/cuda/wsl-user-guide/index.html#getting-started-with-cuda-on-wsl-2
13、How to Install CUDA on Ubuntu 22.04 | Step-by-Step
https://www.cherryservers.com/blog/install-cuda-ubuntu
14、How to Install NVIDIA Drivers on Ubuntu 24.04
https://linuxconfig.org/how-to-install-nvidia-drivers-on-ubuntu-24-04
15、CUDA 12.3下载地址
https://developer.nvidia.com/cuda-12-3-2-download-archive?target_os=Linux&target_arch=x86_64&Distribution=WSL-Ubuntu&target_version=2.0&target_type=deb_local
16、Tensorflow Tested build configurations
https://tensorflow.google.cn/install/source?hl=en#linux
17、cuDNN Support Matrix
https://docs.nvidia.com/deeplearning/cudnn/latest/reference/support-matrix.html#support-matrix
18、Ubuntu 20.04(linux) cuda(12)+cudnn的deb方式安装以及验证
https://blog.csdn.net/qq_32033383/article/details/135015041
19、cuDNN9.4下载地址
https://developer.nvidia.com/cudnn-9-4-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_network
20、下载Linux版64-Bit (x86) Installer17
https://repo.anaconda.com/archive/Anaconda3-2024.02-1-Linux-x86_64.sh
21、PyTorch主页
https://pytorch.org/
22、Jupyter Lab设置切换虚拟环境
https://blog.csdn.net/CUFEECR/article/details/123987150
23、在MNIST上用Pytorch跑跑GPU
https://blog.csdn.net/song5bai/article/details/116358451
24、HanLP
https://github.com/hankcs/HanLP
25、何晗
https://github.com/hankcs
26、自然语义科技有限公司
https://www.hanlp.com/
27、HanLP 安装文档
https://hanlp.hankcs.com/docs/install.html
28、HanLP Demo
https://github.com/hankcs/HanLP/tree/doc-zh/plugins/hanlp_demo/hanlp_demo/zh
29、HanLP Demo API
https://hanlp.hankcs.com/docs/
30、HanLP多语种分句模型
https://github.com/hankcs/HanLP/blob/master/plugins/hanlp_demo/hanlp_demo/sent_split.py
31、HanLP基于规则的分句函数
https://github.com/hankcs/HanLP/blob/master/hanlp/utils/rules.py#L19
32、Nvidia GeForce RTX 2060
https://www.nvidia.cn/geforce/graphics-cards/rtx-2060/
33、Nvidia A100
https://images.nvidia.cn/aem-dam/en-zz/Solutions/data-center/a100/nvidia-a100-datasheet-nvidia-a4-2188504-r5-zhCN.pdf
34、Nvidia Tesla T4
https://www.nvidia.cn/content/dam/en-zz/zh_cn/Solutions/Data-Center/tesla-t4/nvidia-t4-datasheet-a4-nvidia-772234-r14-lr-cn.pdf
35、Neo4j Graph Data Science Compatibility matrix
https://github.com/neo4j/graph-data-science
36、微云数聚
https://we-yun.com/
37、Neo4j Community Linux Tarball Installation
https://neo4j.com/docs/operations-manual/current/installation/linux/tarball/#installation-linux-tarball-service
第2章 微软GraphRAG
1、bgm-3 embedding模型
https://ollama.com/library/bge-m3
2、all-minilm embedding模型
https://ollama.com/library/all-minilm
3、Visualizing and Debugging Your Knowledge Graph
https://github.com/microsoft/graphrag/blob/main/docs/visualization_guide.md
4、《悟空传》的前7章
https://dushu.baidu.com/pc/detail?gid=4305630473
5、《解决tiktoken库调用get_encoding时SSL超时》
https://blog.csdn.net/yufanwenshu/article/details/142290067
6、Auto Prompt Tuning
https://microsoft.github.io/graphrag/prompt_tuning/auto_prompt_tuning/
7、GraphRAG自动Prompt Tuning
https://mp.weixin.qq.com/s/69MeYny5nZmfjS1b4QUvTg
8、开发GraphRAG(知识图谱检索增强生成)应用
https://zhuanlan.zhihu.com/p/704919102
9、ms_graphrag_import.ipynb
https://github.com/microsoft/graphrag/blob/main/examples_notebooks/community_contrib/neo4j/graphrag_import_neo4j_cypher.ipynb
10、高级API源码
https://github.com/microsoft/graphrag/blob/main/graphrag/api/query.py
11、命令行查询工具源码
https://github.com/microsoft/graphrag/blob/main/graphrag/cli/query.py
12、local_search.ipynb
https://github.com/microsoft/graphrag/blob/main/docs/examples_notebooks/local_search.ipynb
13、Ollama主页
https://github.com/ollama/ollama
14、Qwen2.5
https://ollama.com/library/qwen2.5:7b
第3章 Neo4j GraphRAG
1、Neo4j Knowledge Graph Builder主页
https://github.com/neo4j-labs/llm-graph-builder
2、Neo4j GrapRAG的生态
https://neo4j.com/labs/genai-ecosystem/
3、Neo4j Knowledge Graph Builder简介
https://neo4j.com/labs/genai-ecosystem/llm-graph-builder/
4、NeoConverse简介
https://neo4j.com/labs/genai-ecosystem/neoconverse/
5、NeoConverse主页
https://github.com/neo4j-labs/neoconverse
6、GenAI Stack简介
https://neo4j.com/labs/genai-ecosystem/genai-stack/
7、Get Started With GraphRAG: Neo4j’s Ecosystem Tools
https://neo4j.com/developer-blog/graphrag-ecosystem-tools/
8、LLM Knowledge Graph Builder: From Zero to GraphRAG in Five Minutes
https://neo4j.com/developer-blog/graphrag-llm-knowledge-graph-builder/
9、LangChain Neo4j Integration
https://neo4j.com/labs/genai-ecosystem/langchain/
10、LlamaIndex Neo4j Integration
https://neo4j.com/labs/genai-ecosystem/llamaindex/
11、Langchain4j Neo4j Integration
https://neo4j.com/labs/genai-ecosystem/langchain4j/
12、Docker
https://www.docker.com/
13、Docker Desktop
https://www.docker.com/products/docker-desktop/
14、Install Docker Engine on Ubuntu
https://docs.docker.com/engine/install/ubuntu/
15、Overview of installing Docker Compose
https://docs.docker.com/compose/install/
16、Install the Compose plugin
https://docs.docker.com/compose/install/linux/#install-using-the-repository
17、目前国内可用Docker镜像源汇总
https://cloud.tencent.com/developer/article/2459822
18、Daemon proxy configuration
https://docs.docker.com/engine/daemon/proxy/#systemd-unit-file
19、LangChain
https://python.langchain.com/
20、LangSmith
https://smith.langchain.com/
21、Issue#839《Does NOT work with Neo4J Community Edition
https://github.com/neo4j-labs/llm-graph-builder/issues/839
22、HuggingFace主页
https://huggingface.co/
23、Embedding model all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
24、Embedding model BAAI/bge-m3
https://huggingface.co/BAAI/bge-m3
25、LLMGraphTransformer文档
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
26、LLMGraphTransformer源码
https://github.com/langchain-ai/langchain-experimental/blob/main/libs/experimental/langchain_experimental/graph_transformers/llm.py
27、Leiden社区发现算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/leiden/
28、SLLPA(Speaker-Listener Label Propagation)社区发现算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/sllpa/
29、Neo4j Knowledge Graph Builder集成测试程序
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/test_integrationqa.py
30、Neo4j Knowledge Graph Builder backend requirements.txt
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/requirements.txt
31、Neo4j Knowledge Graph Builder backend API
https://github.com/neo4j-labs/llm-graph-builder/blob/main/docs/backend/backend_docs.adoc
32、Answer relevancy metric is worse in languages other than English
https://github.com/neo4j-labs/llm-graph-builder/issues/998
33、Optimization for loading big embedding models into GPU
https://github.com/neo4j-labs/llm-graph-builder/issues/1036
34、Optimization for building more efficient backend image requires less disk space and time
https://github.com/neo4j-labs/llm-graph-builder/issues/1037
第4章 开发GraphRAG应用
1、微软GraphRAG论文
https://arxiv.org/abs/2404.16130
2、Tomaz Bratanic
https://bratanic-tomaz.medium.com/
3、Implementing ‘From Local to Global’ GraphRAG with Neo4j and LangChain: Constructing the Graph
https://medium.com/neo4j/implementing-from-local-to-global-graphrag-with-neo4j-and-langchain-constructing-the-graph-73924cc5bab4
4、《用Neo4j与LangChain实现从局部到全局的RAG:建立知识图谱》
https://zhuanlan.zhihu.com/p/709060837
5、Jupyter Notebook的源码文件
https://github.com/tomasonjo/blogs/blob/master/llm/ms_graphrag.ipynb
6、LangChain
https://www.langchain.com/langchain
7、LlamaIndex
https://www.llamaindex.ai/
8、《LlamaIndex 或 LangChain,哪个更适合作为RAG框架?》
https://blog.csdn.net/CSDNDN/article/details/139596103
9、LangSmith
https://www.langchain.com/langsmith
10、LangGraph
https://www.langchain.com/langgraph
11、Neo4j Cummunity的汉化版
https://we-yun.com/blog/prod-56.html
12、《开发GraphRAG(知识图谱检索增强生成)应用》
https://zhuanlan.zhihu.com/p/704919102
13、HanLP
https://github.com/hankcs/HanLP
14、《揭秘大模型提升秘诀:RAG系统中的文本分块策略》
https://mp.weixin.qq.com/s/HaRKys1A98cF9N1dSoEmGw
15、Neo4jGraph文档
https://python.langchain.com/v0.2/api_reference/community/graphs/langchain_community.graphs.neo4j_graph.Neo4jGraph.html
16、Neo4j KGBuilder make_relationships.py源码
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/src/make_relationships.py
17、Neo4j KGBuilder的llm.py源码
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/src/llm.py
18、LLMGraphTransformer文档
https://python.langchain.com/api_reference/experimental/graph_transformers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html
19、LLMGraphTransformer源码
https://python.langchain.com/api_reference/_modules/langchain_experimental/graph_transformers/llm.html
20、GraphDocument文档
https://python.langchain.com/api_reference/community/graphs/langchain_community.graphs.graph_document.GraphDocument.html
21、Relationship文档
https://python.langchain.com/api_reference/community/graphs/langchain_community.graphs.graph_document.Relationship.html#langchain_community.graphs.graph_document.Relationship
22、Neo4j KGBuilder合并结点的实现
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/src/make_relationships.py#L15
23、Neo4jGraph源码
https://python.langchain.com/v0.2/api_reference/_modules/langchain_community/graphs/neo4j_graph.html#Neo4jGraph.add_graph_documents
24、Hugginface
https://link.zhihu.com/?target=https%3A//huggingface.co/models
25、《如何选择RAG的Embedding模型?》
https://techdiylife.github.io/blog/blog.html?category1=c02&blogid=0047
26、《中文Embedding模型优劣数据评测分析报告》
https://zhuanlan.zhihu.com/p/679166797
27、北京智源研究院
https://www.baai.ac.cn/
28、BAAI/bge-m3模型
https://huggingface.co/BAAI/bge-m3
29、BAAI/bge-m3模型Github主页
https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md
30、KNN算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/knn/
31、WCC算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/wcc/
32、《如何从模型中返回结构化数据》
https://python.langchain.ac.cn/docs/how_to/structured_output/
33、apoc.refactor.mergeNodes的文档
https://neo4j.com/labs/apoc/4.0/overview/apoc.refactor/apoc.refactor.mergeNodes
34、Leiden算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/leiden/
35、SLLPA(Speaker-Listener Label Propagation)算法
https://neo4j.com/docs/graph-data-science/2.12/algorithms/sllpa/
36、《将微软GraphRAG集成到Neo4j中》
https://zhuanlan.zhihu.com/p/713201715
37、Integrating Microsoft GraphRAG into Neo4j
https://towardsdatascience.com/integrating-microsoft-graphrag-into-neo4j-e0d4fa00714c
38、《Implementing RAG: How to Write a Graph Retrieval Query in LangChain》
https://neo4j.com/developer-blog/rag-graph-retrieval-query-langchain/
39、Neo4j向量索引的实例化
https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.neo4j_vector.Neo4jVector.html#langchain_community.vectorstores.neo4j_vector.Neo4jVector.from_existing_index
40、Neo4jVector.similarity_search文档
https://python.langchain.com/v0.2/api_reference/community/vectorstores/langchain_community.vectorstores.neo4j_vector.Neo4jVector.html#langchain_community.vectorstores.neo4j_vector.Neo4jVector.similarity_search
41、Customize response with retrieval query
https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/#customize-response-with-retrieval-query
第5章 Agent开发
1、Conversational RAG
https://python.langchain.com/v0.2/docs/tutorials/qa_chat_history/
2、Agentic RAG
https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/
3、Neo4jVector的文档
https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.neo4j_vector.Neo4jVector.html#langchain_community.vectorstores.neo4j_vector.Neo4jVector.as_retriever
4、LangSmith
https://smith.langchain.com/
5、函数create_react_agent() API
https://langchain-ai.github.io/langgraph/reference/prebuilt/
6、Build an Agent
https://python.langchain.com/docs/tutorials/agents/
7、LangGraph
https://langchain-ai.github.io/langgraph/
8、Graph Definitions
https://langchain-ai.github.io/langgraph/reference/graphs/
9、LanagGraph Prebuilt tools_condition
https://langchain-ai.github.io/langgraph/reference/prebuilt/#langgraph.prebuilt.tool_node.tools_condition
10、How to manage conversation history
https://langchain-ai.github.io/langgraph/how-tos/memory/manage-conversation-history/
11、How to control graph recursion limit
https://langchain-ai.github.io/langgraph/how-tos/recursion-limit/
12、How to create tools
https://python.langchain.com/docs/how_to/custom_tools/
13、Tool Calling with LangChain
https://blog.langchain.dev/tool-calling-with-langchain/
14、Tool calling
https://python.langchain.com/docs/how_to/tool_calling/
第6章 在GraphRAG中应用国产大模型
1、LangChain集成的Chat模型列表
https://python.langchain.com/docs/integrations/chat/
2、DeepSeek R1/V3
https://github.com/deepseek-ai
3、LangChain集成的Embedding模型列表
https://python.langchain.com/docs/integrations/text_embedding/
4、LangChain文心一言Chat模型文档
https://python.langchain.com/docs/integrations/chat/baidu_qianfan_endpoint/
5、LangChain讯飞星火Chat模型文档
https://python.langchain.com/docs/integrations/chat/sparkllm/
6、LangChain通义千问Chat模型文档
https://python.langchain.com/docs/integrations/chat/tongyi/
7、LangChain腾讯混元Chat模型文档
https://python.langchain.com/docs/integrations/chat/tencent_hunyuan/
8、LangChain文心一言Embedding模型文档
https://python.langchain.com/docs/integrations/text_embedding/baidu_qianfan_endpoint/
9、LangChain讯飞星火Embedding模型文档
https://python.langchain.com/docs/integrations/text_embedding/sparkllm/
10、LangChain通义千问Embedding模型文档
https://python.langchain.com/docs/integrations/text_embedding/dashscope/
11、LangChain Huggingface Embedding模型文档
https://python.langchain.com/docs/integrations/text_embedding/huggingfacehub/
12、Refactor ChatHunyuan and support Hunyuan Embedding
https://github.com/langchain-ai/langchain/pull/23160/commits/4d7cc88c2368c77593fbb38d71127d574f623ff2
13、Add function call support in Sparkllm chat model
https://github.com/langchain-ai/langchain/pull/20607/files/454d92a2bd95be7bcd45564b89dbb74c5ce77243
14、Function calling
https://github.com/deepseek-ai/DeepSeek-R1/issues/9
15、《DeepSeek R1测试之八 各大云平台调用》
https://zhuanlan.zhihu.com/p/22540281019/
第7章 本地部署LLM
1、qwen2.5
https://ollama.com/library/qwen2.5
2、bge-m3
https://ollama.com/library/bge-m3
3、openbmb/MiniCPM3-4B
https://huggingface.co/openbmb/MiniCPM3-4B
4、Run custom GGUF model on Ollama
https://zohaib.me/run-custom-gguf-model-on-ollama/
5、MiniCPM3的函数调用例子文档
https://github.com/OpenBMB/MiniCPM/tree/main/demo/minicpm3/function_call
6、vLLM
https://github.com/vllm-project/vllm
7、vLLM支持的LLM列表
https://docs.vllm.ai/en/v0.6.2/models/supported_models.html
8、Running vLLM on Pascal
https://github.com/jasonacox/TinyLLM/tree/main/vllm#running-vllm-on-pascal
9、LLM的文档《Installation: Full Build》
https://docs.vllm.ai/en/latest/getting_started/installation.html#full-build-with-compilation
10、Support for compute capability <7.0
https://github.com/vllm-project/vllm/issues/963
11、Enable support for Pascal GPUs
https://github.com/vllm-project/vllm/pull/4290
12、OpenAI Compatible Server: How to write a tool parser plugin
https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#how-to-write-a-tool-parser-plugin
13、LangChain vLLM Chat
https://python.langchain.com/docs/integrations/chat/vllm/
14、LangChain ChatHuggingFace
https://python.langchain.com/docs/integrations/chat/huggingface/
15、HuggingFaceEndpoint
https://python.langchain.com/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_endpoint.HuggingFaceEndpoint.html
16、HuggingFacePipeline
https://python.langchain.com/api_reference/huggingface/llms/langchain_huggingface.llms.huggingface_pipeline.HuggingFacePipeline.html
17、ChatHuggingFace源码
https://python.langchain.com/api_reference/huggingface/chat_models/langchain_huggingface.chat_models.huggingface.ChatHuggingFace.html#langchain_huggingface.chat_models.huggingface.ChatHuggingFace.bind_tools
18、issue#22379《Tools do not work with HuggingFace》
https://github.com/langchain-ai/langchain/issues/22379
19、Llama.cpp
https://github.com/abetlen/llama-cpp-python
20、LangChain Chat Llama.cpp
https://python.langchain.com/docs/integrations/chat/llamacpp/
21、Issue#957《Generic Function Calling》
https://github.com/abetlen/llama-cpp-python/pull/957
22、Issue#1351《Improve function calling (auto selection, parallel functions)》
https://github.com/abetlen/llama-cpp-python/pull/1351
23、ChatLlamaCpp API
https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.llamacpp.ChatLlamaCpp.html#langchain_community.chat_models.llamacpp.ChatLlamaCpp.bind_tools
第8章 开发GraphRAG APP
1、Python FastAPI
https://github.com/fastapi/fastapi
2、Python Uvicorn WEB服务器
https://www.uvicorn.org/
3、starlette项目
https://github.com/encode/starlette
4、How to delete messages
https://langchain-ai.github.io/langgraph/how-tos/memory/delete-messages/
5、Postman
https://www.postman.com/
6、Streamlit
https://streamlit.io/
7、Flask
https://github.com/pallets/flask
8、《精通Shiny》
http://www.oreilly.com.cn/index.php?func=book&isbn=978-7-5766-0656-0
9、Shiny for Python
https://shiny.posit.co/py/
10、Rstudio Server在线文档
https://posit.co/download/rstudio-server/
11、《RStudio IDE User Guide》
https://docs.posit.co/ide/user/
12、Shiny Server在线文档
https://posit.co/download/shiny-server/
13、配置Shiny Server为用户发布模式
https://docs.posit.co/shiny-server/#host-per-user-application-directories
14、Shiny Server Administrator's Guide
https://docs.posit.co/shiny-server/
15、《Shiny for Python APP开发》
https://zhuanlan.zhihu.com/p/658670798
16、《墨尔本房价回归模型Shiny for Python APP》
https://zhuanlan.zhihu.com/p/658996965
17、Shiny for Python在线文档
https://shiny.posit.co/py/docs/overview.html
18、Mastering Shiny Examples and Solutions for Python
https://youngroklee-ml.github.io/mastering-shiny-for-python/
19、Mastering Shiny Examples and Solutions for Python
https://github.com/youngroklee-ml/mastering-shiny-for-python
第9章 GraphRAG 应用评估
1、Ragas项目主页
https://github.com/explodinggradients/ragas/
2、RAGAS: Automated Evaluation of Retrieval Augmented Generation
https://arxiv.org/abs/2309.15217
3、Integrations
https://docs.ragas.io/en/stable/howtos/integrations/
4、Neo4j KGBuilder
https://github.com/neo4j-labs/llm-graph-builder/
5、ragas_eval.py
https://github.com/neo4j-labs/llm-graph-builder/blob/main/backend/src/ragas_eval.py
6、Evaluate a simple LLM application
https://docs.ragas.io/en/stable/getstarted/evals/
7、References: evaluate()
https://docs.ragas.io/en/stable/references/evaluate/
8、List of available metrics
https://docs.ragas.io/en/stable/concepts/metrics/available_metrics/
9、How to estimate Cost and Usage of evaluations and testset generation
https://docs.ragas.io/en/stable/howtos/applications/_cost/
10、《使用 Ragas 评估 RAG(含代码)》
https://www.zhihu.com/tardis/bd/art/689730410?source_id=1001
11、英文原文
https://towardsdatascience.com/rag-evaluation-using-ragas-4645a4c6c477
12、RAGAS评估及指标解析
https://blog.csdn.net/daada123321/article/details/139601950
13、LLMs
https://docs.ragas.io/en/stable/references/llms/?h=llm_factory
14、Adapting metrics to target language
https://docs.ragas.io/en/stable/howtos/customizations/metrics/_metrics_language_adaptation/