-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
393 lines (339 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# System libs
import os
import sys
import time
# import math
import random
import argparse
import shutil
from distutils.version import LooseVersion
# Numerical libs
import torch
import torch.nn as nn
import math
# Our libs
from semseg.config import cfg
from semseg.dataset import TrainDataset, DecomTrainDataset
from semseg.models import ModelBuilder, SegmentationModule
from semseg.utils import AverageMeter, parse_devices, setup_logger
from semseg.lib.nn import UserScatteredDataParallel, user_scattered_collate, patch_replication_callback
import evaluate
from itertools import cycle
import distribution
from pytorch_memlab import MemReporter
# train one epoch
def train(segmentation_module, iterator, optimizers, history, epoch, cfg): #, sup_iterator=None):
batch_time = AverageMeter()
data_time = AverageMeter()
ave_total_loss = AverageMeter()
ave_acc = AverageMeter()
segmentation_module.train(not cfg.TRAIN.fix_bn)
# main loop
tic = time.time()
print("iterations: {}".format(cfg.TRAIN.epoch_iters))
for i in range(cfg.TRAIN.epoch_iters):
# load a batch of data
batch_data = next(iterator)
#sup_batch_data = None
#if sup_iterator !=None:
# sup_batch_data = next(sup_iterator)
data_time.update(time.time() - tic)
segmentation_module.zero_grad()
# adjust learning rate
cur_iter = i + (epoch - 1) * cfg.TRAIN.epoch_iters
adjust_learning_rate(optimizers, cur_iter, cfg)
# forward pass
#epoch_weight = epoch/cfg.TRAIN.num_epoch
epoch_weight = ((epoch - 1) * cfg.TRAIN.epoch_iters + i) / cfg.TRAIN.max_iters #cfg['TRAIN']['max_iters']
## to make it nonlinear
##epoch_weight = 1 - math.exp(-10 *epoch_weight)
#epoch_weight = 1-(1/(10*epoch_weight + 1))
loss, acc = segmentation_module(batch_data,epoch_weight=epoch_weight, weight_type=cfg.TRAIN.weight_type)
#loss, acc, weights, unsup_weighted_losses, unsup_loss = segmentation_module(batch_data)
loss = loss.mean()
acc = acc.mean()
# Backward
loss.backward()
for optimizer in optimizers:
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - tic)
tic = time.time()
# update average loss and acc
ave_total_loss.update(loss.data.item())
ave_acc.update(acc.data.item()*100)
# calculate accuracy, and display
if i % cfg.TRAIN.disp_iter == 0:
print('Epoch: [{}][{}/{}], Time: {:.2f}, Data: {:.2f}, '
'lr_encoder: {:.6f}, lr_decoder: {:.6f}, '
'Accuracy: {:4.2f}, Loss: {:.6f}'
.format(epoch, i, cfg.TRAIN.epoch_iters,
batch_time.average(), data_time.average(),
cfg.TRAIN.running_lr_encoder, cfg.TRAIN.running_lr_decoder,
ave_acc.average(), ave_total_loss.average()))
fractional_epoch = epoch - 1 + 1. * i / cfg.TRAIN.epoch_iters
history['train']['epoch'].append(fractional_epoch)
history['train']['loss'].append(loss.data.item())
history['train']['acc'].append(acc.data.item())
'''
history['train']['unsup_loss'].append(unsup_loss)
history['train']['unsup_weighted_losses'].append(unsup_weighted_losses)
history['train']['weights'].append(weights)
'''
#print(torch.cuda.memory_summary(device=None, abbreviated=False))
#sys.stdout.flush()
## Added them because of the cuda out of memory error
#reporter = MemReporter()
#reporter.report()
#del loss
#torch.cuda.empty_cache()
def checkpoint_best(nets, history, cfg):
# I am using 0 in the name of the current model
print('Saving checkpoints {}/history_epoch_best.pth'.format(cfg.DIR))
shutil.copyfile('{}/history_epoch_{}.pth'.format(cfg.DIR, 0),
'{}/history_epoch_best.pth'.format(cfg.DIR))
shutil.copyfile('{}/encoder_epoch_{}.pth'.format(cfg.DIR, 0),
'{}/encoder_epoch_best.pth'.format(cfg.DIR))
shutil.copyfile('{}/decoder_epoch_{}.pth'.format(cfg.DIR, 0),
'{}/decoder_epoch_best.pth'.format(cfg.DIR))
def checkpoint(nets, history, cfg):
# I am using 0 in the name of the current model
print('Saving checkpoints {}/history_epoch_{}.pth'.format(cfg.DIR, 0))
(net_encoder, net_decoder, crit) = nets
dict_encoder = net_encoder.state_dict()
dict_decoder = net_decoder.state_dict()
torch.save(
history,
'{}/history_epoch_{}.pth'.format(cfg.DIR, 0))
torch.save(
dict_encoder,
'{}/encoder_epoch_{}.pth'.format(cfg.DIR, 0))
torch.save(
dict_decoder,
'{}/decoder_epoch_{}.pth'.format(cfg.DIR, 0))
def group_weight(module):
group_decay = []
group_no_decay = []
for m in module.modules():
if isinstance(m, nn.Linear):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.conv._ConvNd):
group_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
elif isinstance(m, nn.modules.batchnorm._BatchNorm):
if m.weight is not None:
group_no_decay.append(m.weight)
if m.bias is not None:
group_no_decay.append(m.bias)
assert len(list(module.parameters())) == len(group_decay) + len(group_no_decay)
groups = [dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0)]
return groups
def create_optimizers(nets, cfg):
(net_encoder, net_decoder, crit) = nets
optimizer_encoder = torch.optim.SGD(
group_weight(net_encoder),
lr=cfg.TRAIN.lr_encoder,
momentum=cfg.TRAIN.beta1,
weight_decay=cfg.TRAIN.weight_decay)
optimizer_decoder = torch.optim.SGD(
group_weight(net_decoder),
lr=cfg.TRAIN.lr_decoder,
momentum=cfg.TRAIN.beta1,
weight_decay=cfg.TRAIN.weight_decay)
return (optimizer_encoder, optimizer_decoder)
def adjust_learning_rate(optimizers, cur_iter, cfg):
scale_running_lr = ((1. - float(cur_iter) / cfg.TRAIN.max_iters) ** cfg.TRAIN.lr_pow)
cfg.TRAIN.running_lr_encoder = cfg.TRAIN.lr_encoder * scale_running_lr
cfg.TRAIN.running_lr_decoder = cfg.TRAIN.lr_decoder * scale_running_lr
(optimizer_encoder, optimizer_decoder) = optimizers
for param_group in optimizer_encoder.param_groups:
param_group['lr'] = cfg.TRAIN.running_lr_encoder
for param_group in optimizer_decoder.param_groups:
param_group['lr'] = cfg.TRAIN.running_lr_decoder
def main(cfg, gpus):
# Network Builders
net_encoder = ModelBuilder.build_encoder(
arch=cfg.MODEL.arch_encoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
weights=cfg.MODEL.weights_encoder)
net_decoder = ModelBuilder.build_decoder(
arch=cfg.MODEL.arch_decoder.lower(),
fc_dim=cfg.MODEL.fc_dim,
num_class=cfg.DATASET.num_class,
weights=cfg.MODEL.weights_decoder)
#nSamples = [611, 648, 754, 1169, 591, 429] #, 287]
'''
train_annotations_colored_list = distribution.get_paths(os.path.join(cfg.DATASET.root_dataset, cfg.DATASET.list_train))
if cfg.TRAIN.sup == True:
train_annotations_colored_list.extend(distribution.get_paths(os.path.join(cfg.DATASET.root_dataset, cfg.DATASET.list_sup_train)))
# nSamples = distribution.main(train_annotations_colored_list)[1:]
nSamples = distribution.main(train_annotations_colored_list, bg=False)
normedWeights = [1 - x for x in nSamples]#[1 - (x / sum(nSamples)) for x in nSamples]
normedWeights = torch.FloatTensor(normedWeights).cuda()
crit = nn.NLLLoss(ignore_index=-1, weight=normedWeights)
'''
crit = nn.NLLLoss(ignore_index=-1)
if cfg.MODEL.arch_decoder.endswith('deepsup'):
segmentation_module = SegmentationModule(
net_encoder, net_decoder, crit, cfg.TRAIN.batch_size_per_gpu, cfg.TRAIN.type, cfg.TRAIN.deep_sup_scale)
else:
segmentation_module = SegmentationModule(
net_encoder, net_decoder, crit, cfg.TRAIN.batch_size, cfg.TRAIN.type)
# Supervised dataset and Loader
# Lets always have the supervised path and therefore cfg.TRAIN.sup = True
#if cfg.TRAIN.sup == True:
dataset_sup_train = TrainDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_sup_train,
cfg.DATASET,
batch_per_gpu=cfg.TRAIN.batch_size_per_gpu,
ignoreBg = cfg.TRAIN.ignoreBg)
loader_sup_train = torch.utils.data.DataLoader(
dataset_sup_train,
batch_size=len(gpus), # we have modified data_parallel
shuffle=False, # we do not use this param
collate_fn=user_scattered_collate,
num_workers=cfg.TRAIN.workers,
drop_last=True,
pin_memory=True)
# Dataset and Loader
if 'seq' in cfg.TRAIN.type:
dataset_seq_train = DecomTrainDataset(
cfg.DATASET.root_dataset,
cfg.DATASET.list_train,
cfg.DATASET,
batch_per_gpu=cfg.TRAIN.batch_size_per_gpu,
ignoreBg = cfg.TRAIN.ignoreBg)
loader_seq_train = torch.utils.data.DataLoader(
dataset_seq_train,
batch_size=len(gpus), # we have modified data_parallel
shuffle=False, # we do not use this param
collate_fn=user_scattered_collate,
num_workers=cfg.TRAIN.workers,
drop_last=True,
pin_memory=True)
cfg.TRAIN.epoch_iters = dataset_sup_train.num_sample // cfg.TRAIN.batch_size_per_gpu
cfg.TRAIN.max_iters = cfg.TRAIN.epoch_iters * cfg.TRAIN.num_epoch
iterator_train = iter(loader_sup_train) #assuming we always have the sup path
if 'seq' in cfg.TRAIN.type:
print('sup: {}, seq: {}, max: {}'.format(dataset_sup_train.num_sample, dataset_seq_train.num_sample, max(dataset_sup_train.num_sample, dataset_seq_train.num_sample)))
cfg.TRAIN.epoch_iters = max(dataset_sup_train.num_sample, dataset_seq_train.num_sample) // cfg.TRAIN.batch_size_per_gpu
cfg.TRAIN.max_iters = cfg.TRAIN.epoch_iters * cfg.TRAIN.num_epoch
iterator_train = iter(zip(loader_sup_train, loader_seq_train))
print('1 Epoch = {} iters'.format(cfg.TRAIN.epoch_iters))
# load nets into gpu
if len(gpus) > 1:
segmentation_module = UserScatteredDataParallel(
segmentation_module,
device_ids=gpus)
# For sync bn
patch_replication_callback(segmentation_module)
segmentation_module.cuda()
# Set up optimizers
nets = (net_encoder, net_decoder, crit)
optimizers = create_optimizers(nets, cfg)
# Main loop
#history = {'train': {'epoch': [], 'loss': [], 'acc': [], 'unsup_weighted_losses': [], 'unsup_loss': [], 'weights': []}}
history = {'train': {'epoch': [], 'loss': [], 'acc': []}}
best_acc = 0
best_IoU = 0
best_epoch = 0
for epoch in range(cfg.TRAIN.start_epoch, cfg.TRAIN.num_epoch):
if cfg.TRAIN.start_epoch == 1 and epoch == cfg.TRAIN.start_epoch:
continue
else:
train(segmentation_module, iterator_train, optimizers, history, epoch+1, cfg)
checkpoint(nets, history, cfg)
if epoch > 0:
cfg.MODEL.weights_encoder = os.path.join(cfg.DIR, 'encoder_' + cfg.VAL.checkpoint)
cfg.MODEL.weights_decoder = os.path.join(cfg.DIR, 'decoder_' + cfg.VAL.checkpoint)
with torch.no_grad():
current_IoU, current_acc = evaluate.main(cfg, 0)
is_best = current_IoU > best_IoU
best_IoU = max(current_IoU, best_IoU)
if is_best:
best_epoch = epoch
best_acc = current_acc
checkpoint_best(nets, history, cfg)
print("Epoch: {}, Current best IoU: {}, current best acc: {}".format(best_epoch+1, best_IoU, best_acc))
print('Training Done!')
'''
print("Evaluating....")
cfg.MODEL.weights_encoder = os.path.join(cfg.DIR, 'encoder_epoch_best.pth')
cfg.MODEL.weights_decoder = os.path.join(cfg.DIR, 'decoder_epoch_best.pth')
assert os.path.exists(cfg.MODEL.weights_encoder) and \
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!"
cfg.VAL.checkpoint = 'epoch_best.pth'
current_IoU, current_acc = evaluate.main(cfg, 0)
print("val IoU: {}, val acc: {}".format(current_IoU, current_acc))
cfg.DATASET.list_val = './data/test.odgt'
current_IoU, current_acc = evaluate.main(cfg, 0)
print("test IoU: {}, test acc: {}".format(current_IoU, current_acc))
'''
if __name__ == '__main__':
assert LooseVersion(torch.__version__) >= LooseVersion('0.4.0'), \
'PyTorch>=0.4.0 is required'
parser = argparse.ArgumentParser(
description="PyTorch Semantic Segmentation Training"
)
parser.add_argument(
"--cfg",
default="config/ade20k-resnet50dilated-ppm_deepsup.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--gpus",
default="0-3",
help="gpus to use, e.g. 0-3 or 0,1,2,3"
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
cfg.merge_from_file(args.cfg)
cfg.merge_from_list(args.opts)
# cfg.freeze()
logger = setup_logger(distributed_rank=0) # TODO
logger.info("Loaded configuration file {}".format(args.cfg))
logger.info("Running with config:\n{}".format(cfg))
# Output directory
if not os.path.isdir(cfg.DIR):
os.makedirs(cfg.DIR)
logger.info("Outputing checkpoints to: {}".format(cfg.DIR))
with open(os.path.join(cfg.DIR, 'config.yaml'), 'w') as f:
f.write("{}".format(cfg))
# Start from checkpoint
#if cfg.TRAIN.start_epoch > 0:
print(cfg.TRAIN.start_epoch)
if cfg.TRAIN.start_epoch != 0:
cfg.MODEL.weights_encoder = os.path.join(
#cfg.DIR, 'encoder_epoch_{}.pth'.format(cfg.TRAIN.start_epoch))
cfg.DIR, 'encoder_epoch_best.pth')
print(f"weights for encoder: {os.path.join(cfg.DIR, 'encoder_epoch_best.pth')}")
cfg.MODEL.weights_decoder = os.path.join(
#cfg.DIR, 'decoder_epoch_{}.pth'.format(cfg.TRAIN.start_epoch))
cfg.DIR, 'decoder_epoch_best.pth')
print(f"weights for decoder: {os.path.join(cfg.DIR, 'decoder_epoch_best.pth')}")
assert os.path.exists(cfg.MODEL.weights_encoder) and \
os.path.exists(cfg.MODEL.weights_decoder), "checkpoint does not exitst!"
# Parse gpu ids
gpus = parse_devices(args.gpus)
gpus = [x.replace('gpu', '') for x in gpus]
gpus = [int(x) for x in gpus]
num_gpus = len(gpus)
cfg.TRAIN.batch_size = num_gpus * cfg.TRAIN.batch_size_per_gpu
cfg.TRAIN.max_iters = cfg.TRAIN.epoch_iters * cfg.TRAIN.num_epoch
cfg.TRAIN.running_lr_encoder = cfg.TRAIN.lr_encoder
cfg.TRAIN.running_lr_decoder = cfg.TRAIN.lr_decoder
cfg.TRAIN.type = cfg.TRAIN.type
random.seed(cfg.TRAIN.seed)
torch.manual_seed(cfg.TRAIN.seed)
main(cfg, gpus)