forked from icrc/waterboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data_for_import.py
393 lines (286 loc) · 16.3 KB
/
prepare_data_for_import.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import csv
import itertools
import re
from collections import defaultdict, Counter
import difflib
import openpyxl
MIN_SIMILAR_VALUES = 3
MIN_SIMLARITY_RATIO = 0.75
# path = '/home/dodobas/WORK/waterboard/Water points of whole Tigray Imported into new database-November 2018.xlsx'
path = '/home/dodobas/WORK/waterboard/data_for_import_20181109.xlsx'
SPEC = {
'Unique_Id', 'Zone', 'Woreda', 'Tabiya', 'Kushet', 'Site_Name', 'Scheme_Type', 'Year_of_Construction', 'Result',
'Well Use', 'Depth', 'Yield', 'Static_Water_Level', 'Pump_Type', 'Power_Source', 'Functioning',
'Reason_of_Non_Functioning', 'Intervention_Required', 'Ave_Dist_from_near_Village (km)', 'Beneficiaries',
'Femal Beneficiaries', 'Water_Committe_Exist', 'By Law (Sirit)', 'Fund_Raise', 'Amount_of_Deposited_', 'Bank book',
'Fencing_Exist', 'Guard', 'Livestock', 'Funded_By', 'Constructed_By', 'General_Condition', 'Name_of_Data_Collector',
'Date_of_Data_Collection', 'Name_and_tel_of_Contact_Person', 'Latitude', 'Longitude', 'Altitude', 'Accuracy',
'Img Picture_of_Scehem'
}
SPECIAL_CHARS = {'!', '&', ';', ':', '`', '~'}
def clean_value(value):
if value:
return str(value).strip().strip('\n').replace('\n', ' ')
def find_similar(values_set, value, num=2):
sim_ratios = [(val, difflib.SequenceMatcher(None, value, val).ratio()) for val in values_set if val != value]
return [
sim_ratio[0] for sim_ratio in sorted(sim_ratios, key=lambda x: x[1], reverse=True) if
sim_ratio[1] > MIN_SIMLARITY_RATIO
][:num]
def check_text(col_name, errors, warnings, clean_rows, required=False, show_missing=False, unique=False, regex=None, max_length=None, min_length=None, check_special=True, set_titlecase=False, set_uppercase=False):
if col_name not in SPEC:
raise ValueError(f'{col_name} not found in col spec!')
unique_set = set()
print(f'Checking: {col_name}', end='')
for row_idx, row in clean_rows.items():
val = row.get(col_name)
if val is None or val == '':
if required:
errors[row_idx].append(f'{col_name}: Value cannot be empty')
if show_missing:
warnings[row_idx].append(f'{col_name}: Value should not be empty')
continue
if unique:
if val in unique_set:
warnings[row_idx].append(f'{col_name}: Value already in unique set: {val}')
else:
unique_set.add(val)
if regex and not re.fullmatch(regex, val):
warnings[row_idx].append(f'{col_name}: Value not as specified: {val}')
if max_length and len(val) > max_length:
warnings[row_idx].append(f'{col_name}: Value longer than (max_length={max_length}), got: {len(val)}, {val}')
if min_length and len(val) < min_length:
warnings[row_idx].append(f'{col_name}: Value shorter than (min_length={min_length}), got: {len(val)}, {val}')
if check_special:
error_chars = set()
for char in val:
if char in SPECIAL_CHARS:
error_chars.add(char)
if error_chars:
warnings[row_idx].append(f'{col_name}: Has special characters: {error_chars}')
if set_titlecase:
val = val.title()
if set_uppercase:
val = val.upper()
# set the new value, trim at max length
row[col_name] = val[:max_length]
# add errors
row['_import_errors'] = ';;;'.join(errors[row_idx]) if errors[row_idx] else ''
row['_import_warnings'] = ';;;'.join(warnings[row_idx]) if warnings[row_idx] else ''
print('...done')
def check_dropdown(col_name, errors, warnings, clean_rows, required=False, show_missing=False, max_length=None, min_length=None, check_special=True, set_titlecase=True, set_uppercase=False, check_similar=False):
if col_name not in SPEC:
raise ValueError(f'{col_name} not found in col spec!')
value_set = set()
val_counts = Counter()
print(f'Checking: {col_name}', end='')
for row_idx, row in clean_rows.items():
val = row.get(col_name)
if val is None or val == '':
if required:
errors[row_idx].append(f'{col_name}: Value cannot be empty')
if show_missing:
warnings[row_idx].append(f'{col_name}: Value should not be empty')
continue
if max_length and len(val) > max_length:
warnings[row_idx].append(f'{col_name}: Value longer than (max_length={max_length}), got: {len(val)}, {val}')
if min_length and len(val) < min_length:
warnings[row_idx].append(f'{col_name}: Value shorter than (min_length={min_length}), got: {len(val)}, {val}')
if check_special:
error_chars = set()
for char in val:
if char in SPECIAL_CHARS:
error_chars.add(char)
if error_chars:
warnings[row_idx].append(f'{col_name}: Has special characters: {error_chars}')
# transform value
if set_titlecase:
val = val.title()
if set_uppercase:
val = val.upper()
val_counts[val] += 1
value_set.add(val)
# set the new value, trim at max length
row[col_name] = val[:max_length]
# add errors
row['_import_errors'] = ';;;'.join(errors[row_idx]) if errors[row_idx] else ''
row['_import_warnings'] = ';;;'.join(warnings[row_idx]) if warnings[row_idx] else ''
if check_similar is True:
for val, cnt in val_counts.items():
if cnt < MIN_SIMILAR_VALUES:
similar_values = find_similar(value_set, val)
if similar_values:
errors[0].append(
f'{col_name}: Possible typo for: "{val}", similar values: {similar_values}'
)
print('...done')
def check_integer(col_name, errors, warnings, clean_rows, required=False, show_missing=False, range_spec=None, set_empty_on_format_error=False):
if col_name not in SPEC:
raise ValueError(f'{col_name} not found in col spec!')
print(f'Checking: {col_name}', end='')
for row_idx, row in clean_rows.items():
val = row.get(col_name)
if val is None or val == '':
if required:
errors[row_idx].append(f'{col_name}: Value cannot be empty')
if show_missing:
warnings[row_idx].append(f'{col_name}: Value should not be empty')
continue
if not re.fullmatch(r'-?\d+', val):
if set_empty_on_format_error is True:
row[col_name] = None
warnings[row_idx].append(f'{col_name}: Expected whole number, got: {val}')
else:
errors[row_idx].append(f'{col_name}: Expected whole number, got: {val}')
continue
int_value = int(val)
if range_spec:
if not (range_spec[0] <= int_value <= range_spec[1]):
warnings[row_idx].append(
f'{col_name}: Out of range expected {range_spec[0]} -> {range_spec[1]}, got: {val}')
# set the new value
row[col_name] = int_value
# add errors
row['_import_errors'] = ';;;'.join(errors[row_idx]) if errors[row_idx] else ''
row['_import_warnings'] = ';;;'.join(warnings[row_idx]) if warnings[row_idx] else ''
print('...done')
def check_decimal(col_name, errors, warnings, clean_rows, required=False, show_missing=False, range_spec=None, set_empty_on_format_error=False):
if col_name not in SPEC:
raise ValueError(f'{col_name} not found in col spec!')
print(f'Checking: {col_name}', end='')
for row_idx, row in clean_rows.items():
val = row.get(col_name)
if val is None or val == '':
if required:
errors[row_idx].append(f'{col_name}: Value cannot be empty')
if show_missing:
warnings[row_idx].append(f'{col_name}: Value should not be empty')
continue
if not re.fullmatch(r'-?\d+\.?\d*', val):
if set_empty_on_format_error is True:
row[col_name] = None
warnings[row_idx].append(f'{col_name}: Expected decimal number, got: {val}')
else:
errors[row_idx].append(f'{col_name}: Expected decimal number, got: {val}')
continue
float_val = float(val)
if range_spec:
if not (range_spec[0] <= float_val <= range_spec[1]):
warnings[row_idx].append(
f'{col_name}: Out of range expected {range_spec[0]} -> {range_spec[1]}, got: {val}')
# set the new value
row[col_name] = float_val
# add errors
row['_import_errors'] = ';;;'.join(errors[row_idx]) if errors[row_idx] else ''
row['_import_warnings'] = ';;;'.join(warnings[row_idx]) if warnings[row_idx] else ''
print('...done')
def collect_errors_and_warnings():
check_text('Unique_Id', errors, warnings, clean_rows, required=True, unique=True, regex=r'[a-zA-Z]{2}\d{5}', min_length=7, max_length=7, set_uppercase=True)
check_dropdown('Zone', errors, warnings, clean_rows, required=True, max_length=13, min_length=7)
check_dropdown('Woreda', errors, warnings, clean_rows, required=True, max_length=17, min_length=4)
check_dropdown('Tabiya', errors, warnings, clean_rows, required=True, max_length=20, min_length=3)
check_dropdown('Kushet', errors, warnings, clean_rows, required=True, max_length=25, min_length=3)
check_text('Site_Name', errors, warnings, clean_rows, max_length=35, min_length=2)
check_dropdown('Scheme_Type', errors, warnings, clean_rows, required=True, max_length=3, min_length=2, set_uppercase=True)
check_integer('Year_of_Construction', errors, warnings, clean_rows, range_spec=(1950, 2019))
check_dropdown('Result', errors, warnings, clean_rows, max_length=10, min_length=3)
check_dropdown('Well Use', errors, warnings, clean_rows, max_length=28, min_length=6)
check_decimal('Depth', errors, warnings, clean_rows, range_spec=(0, 550), set_empty_on_format_error=True)
check_decimal('Yield', errors, warnings, clean_rows, range_spec=(0, 90), set_empty_on_format_error=True)
check_decimal('Static_Water_Level', errors, warnings, clean_rows, range_spec=(0, 170), set_empty_on_format_error=True)
check_dropdown('Pump_Type', errors, warnings, clean_rows, max_length=11, min_length=3)
check_dropdown('Power_Source', errors, warnings, clean_rows, max_length=9, min_length=4)
check_dropdown('Functioning', errors, warnings, clean_rows, max_length=3, min_length=2)
check_dropdown('Reason_of_Non_Functioning', errors, warnings, clean_rows, max_length=25, min_length=5)
check_dropdown('Intervention_Required', errors, warnings, clean_rows, max_length=19, min_length=5)
check_decimal('Ave_Dist_from_near_Village (km)', errors, warnings, clean_rows, range_spec=(0, 100), set_empty_on_format_error=True)
check_integer('Beneficiaries', errors, warnings, clean_rows, range_spec=(0, 10000))
check_integer('Femal Beneficiaries', errors, warnings, clean_rows, range_spec=(0, 10000))
check_dropdown('Water_Committe_Exist', errors, warnings, clean_rows, max_length=3, min_length=2)
check_dropdown('By Law (Sirit)', errors, warnings, clean_rows, max_length=3, min_length=2)
check_dropdown('Fund_Raise', errors, warnings, clean_rows, max_length=3, min_length=2)
check_decimal('Amount_of_Deposited_', errors, warnings, clean_rows, range_spec=(0, 300000))
check_dropdown('Bank book', errors, warnings, clean_rows, max_length=3, min_length=2)
check_dropdown('Fencing_Exist', errors, warnings, clean_rows, max_length=3, min_length=2)
check_dropdown('Guard', errors, warnings, clean_rows, max_length=3, min_length=2)
check_integer('Livestock', errors, warnings, clean_rows, range_spec=(0, 3000), set_empty_on_format_error=True)
check_dropdown('Funded_By', errors, warnings, clean_rows, max_length=17, min_length=3)
check_dropdown('Constructed_By', errors, warnings, clean_rows, max_length=18, min_length=3)
check_dropdown('General_Condition', errors, warnings, clean_rows, max_length=4, min_length=4)
check_text('Name_of_Data_Collector', errors, warnings, clean_rows, max_length=42, min_length=3)
check_text(
'Date_of_Data_Collection', errors, warnings, clean_rows,
regex=r'\d{1,2}\/\d{1,2}\/\d{2,4}|\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}',
max_length=19, min_length=6, check_special=False
)
check_text('Name_and_tel_of_Contact_Person', errors, warnings, clean_rows, max_length=35, min_length=3, check_special=False)
check_text('Img Picture_of_Scehem', errors, warnings, clean_rows, max_length=190, min_length=169, check_special=False)
check_decimal('Latitude', errors, warnings, clean_rows, show_missing=True, range_spec=(3, 15), set_empty_on_format_error=True)
check_decimal('Longitude', errors, warnings, clean_rows, show_missing=True, range_spec=(32, 48), set_empty_on_format_error=True)
check_decimal('Altitude', errors, warnings, clean_rows, range_spec=(-1, 5000), set_empty_on_format_error=True)
check_decimal('Accuracy', errors, warnings, clean_rows, range_spec=(-10, 50), set_empty_on_format_error=True)
# calc some stats
total_cells = len(clean_rows) * len(SPEC)
total_errors = sum(len(row_errors) for row_errors in errors.values())
# pprint.pprint(errors, width=300)
print(f'cells: {total_cells}, errors: {total_errors}, ratio: {(total_errors / total_cells) * 100:.2f}')
def write_error_report():
with open('import_result.txt', 'w') as f:
sorted_errors = sorted(errors.items(), key=lambda x: x[0])
f.write('==========\nRow errors:\n==========\n\n')
for error_row, values in sorted_errors[1:]:
if len(values) > 0:
f.write(f'Row - {error_row}:\n')
for val in values:
f.write(f'\t{val}\n')
f.write('\n')
f.write('\n\n==========\nPossible spelling errors:\n==========\n\n')
sorted_warnings = sorted(sorted_errors[0][1])
for key, group in itertools.groupby(sorted_warnings, key=lambda x: x.split(':')[0]):
f.write(f'Attribute - "{key}":\n')
for err in group:
f.write(f'\t{":".join(err.split(":")[1:])}\n')
f.write('\n')
if __name__ == '__main__':
workbook = openpyxl.load_workbook(path, read_only=True)
worksheet = workbook.active
rows = worksheet.iter_rows()
header = [clean_value(cell.value) for cell in next(rows)]
header_set = {col for col in header if col}
missing_diff = SPEC.difference(header_set)
new_cols_diff = header_set.difference(SPEC)
if missing_diff:
raise ValueError(f'Missing columns: {missing_diff}')
if new_cols_diff:
raise ValueError(f'Got new columns: {new_cols_diff}')
clean_rows = {}
row_num = 2
for row in rows:
clean_cols = {}
for col_idx, col in enumerate(row):
if header[col_idx] is None:
continue
clean_cols[header[col_idx]] = clean_value(col.value)
# skip rows with no values
if all(v is None for v in clean_cols.values()):
continue
clean_rows[row_num] = clean_cols
row_num += 1
errors = defaultdict(list)
warnings = defaultdict(list)
collect_errors_and_warnings()
write_error_report()
header_list = [
"Unique_Id", "Zone", "Woreda", "Tabiya", "Kushet", "Site_Name", "Scheme_Type", "Year_of_Construction",
"Result", "Well Use", "Depth", "Yield", "Static_Water_Level", "Pump_Type", "Power_Source", "Functioning",
"Reason_of_Non_Functioning", "Intervention_Required", "Ave_Dist_from_near_Village (km)", "Beneficiaries",
"Femal Beneficiaries", "Water_Committe_Exist", "By Law (Sirit)", "Fund_Raise", "Amount_of_Deposited_",
"Bank book", "Fencing_Exist", "Guard", "Livestock", "Funded_By", "Constructed_By", "General_Condition",
"Name_of_Data_Collector", "Date_of_Data_Collection", "Name_and_tel_of_Contact_Person", "Img Picture_of_Scehem",
"Latitude", "Longitude", "Altitude", "Accuracy",
"_import_errors", "_import_warnings"
]
with open('clean_dataset.csv', 'w') as clean_dataset:
writer = csv.DictWriter(clean_dataset, fieldnames=header_list)
writer.writeheader()
writer.writerows(clean_rows.values())